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Electromagnetic unidirectionality in magnetic photonic crystals
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We study the effect of electromagnetimidirectionality, which can occur in magnetic photonic crystals
under certain conditions. A unidirectional periodic medium, being perfectly transparent for an electromagnetic
wave of certain frequency, “freezes” the radiation of the same frequency propagating in the opposite direction.
One of the most remarkable manifestations of the unidirectionality is that while the incident radiation can enter
the unidirectional slab in either direction with little or even no reflectance, it cannot escape from there getting
trapped inside the periodic medium in the form of the coherent frozen mode. Having entered the slab, the wave
slows down dramatically and its amplitude increases enormously, creating unique conditions for nonlinear
phenomena. Such a behavior is an extreme manifestation of the spectral nonreciprocity, which can only occur
in gyrotropic photonic crystals. Unidirectional photonic crystals can be made of common ferro- or ferrimag-
netic materials alternated with anisotropic dielectric components. A key requirement for the property of uni-
directionality is the proper spatial arrangement of the constitutive components.
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I. INTRODUCTION k=k,, u(k)=dw(K)/dk, )
A. Unidirectional photonic crystals and suppose that one of the spectral branah@e) has a

Photonic crystals are spatially periodic composites madétationary inflection point &=kq, o= w,
up of lossless dielectric components. As a consequence of
spatial periodicity, the electromagnetic frequency spectrum f7_w
of a photonic crystal develops a band-gap structure similar to ak
that of electrons in semiconductors and metake, for in-
stance, Refs. 1-6 and references thgregyrotropic photo- 5 shown in Fig. 1. Note that there are two propagating
nic crystals are those in which at least one of the constitutivegended Bloch waves with frequencys=wo: one with k
components is a magnetic mater{al ferromagnet or a fer- =k, and the other wittk=k,. Obviously, only one of the
rite) displaying the Faraday rotatidn” Such materials are wo waves can transfer electromagnetic energy—the one
often referred to as gyrotropic or bigyrotropic. If a gyrotropic it k=k, and the group velocitu(k;)<0. The Bloch
photonic crystal satisfies certain symmetry conditions formu'eigenmode withk =k, has zero group velocity(k,) =0 and
Iatcid in Ref. 10, its bulk electromagnetic dispersion relationyges not transfer energy. This latter eigenmode associated
w(k) may display asymmetry with respect to the Bloch wavewith stationary inflection point3) is referred to as th&ozen
vectork, mode As one can see in Fig. 1, none of the eigenmodes with
o= wg has positive group velocity and therefore none of the
- - electromagnetic eigenmodes can transfer the energy from left
w(k)# w(=k), D 1o right at this particular frequency! Thus a photonic crystal
with the dispersion relation similar to that in Fig. 1 displays
as shown in Fig. 1. the property ofelectromagnetic unidirectionalitgt o= w.
The bulk spectral asymmetfil) by no means occurs au- Such a remarkable effect can be viewed as an extreme mani-
tomatically in any magnetic photonic crystal. Quite the op-festation of the spectral asymmett).
posite, only special periodic arrays of magnetic and other According to Ref. 10, the effect of unidirectionality can
dielectric components can produce the effédn example  occur in magnetic photonic crystals made up of common
of a such periodic stack is shown in Fig. 2. The degree of thejielectric and ferro- or ferrimagnetic componetus least at
spectral asymmetry depends on the magnitude of circulafiequencies below #8Hz). There are two key physical re-
birefringence of the gyrotropic component, as well as onquirements for that:
some other geometric and physical parameters of the peri- (j) The space arrangement of the constitutive components
odic array. Detailed theoretical analysis of the problem alongnust Satisfy certain symmetry criterion for Spectra| asymme-
with a number of specific examples are provided in Ref. 10try. This criterion, specified in Ref. 10, rules out all nonmag-
The property of bulk spectral asymmetry has variousnetic and the majority of magnetic photonic crystals. The
physical consequences, one of which is the effectifli-  space arrangement of magnetic and other constitutive com-
rectional wave propagationLet us consider a transverse ponents must be Comp|ex enough to allow for the bulk spec-
monochromatic wave propagating along a symmetry directral asymmetry(1).
tion z of a gyrotropic photonic crystal. The Bloch wave vec-  (ji) The magnetic constituertfor instance, ferrite must
tor k, as well as the group velocity(k)=Jdw(k)/ok are  display significant circular birefringence at frequency range
parallel toz. Let us denote of interest, for example, several percent or more. Failure to
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FIG. 1. An example of asym-
metric bulk electromagnetic dis-
persion relation of a periodic mag-
netic stack. Atw= wg, k=kg,, one
of the spectral branches develops
a stationary inflection poin@) as-
sociated with the frozen mode,
is the edge of the lowest fre-
guency band. The grapha) and
(b) represent two different choices
of the Brillouin zone. The values
o andk are expressed in units of
c/L and 1L, respectively.
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satisfy this condition does not formally rule out the phenom-are met, one can always achieve electromagnetic unidirec-
enon of unidirectionality, but it makes the magnitude of thetionality at a given frequencw, by adjusting at least two
effect insignificant. Indeed, weak Faraday rotation leads to different physical and/or geometrical parameters, such as

small value of the third derivativeafw/&kg)k:k(J in Eq. (3), «the ratiop=F/A of the layers thicknesses,
which, in turn, pushes the stationary inflection poisg in _ +the misalignment angle = ¢, — ¢, between anisotropic
Fig. 1 too close to the photonic band edgg. dielectric layers,

The simplest and, perhaps, the most practical periodic * magnetic permeability and/or electric permittivity of the
structures displaying the property of unidirectionality arel@yers(this can be done by application of external homoge-
one-dimensional1D) periodic magnetic stacks, an example N€ous magnetic or electric fiefer9.
of which is presented in Fig. 2. If the above two conditions ~Physical manifestations of the electromagnetic unidirec-

tionality prove to be rather universal and dependent solely on
;. 2 F the dispersion reIationu(IZ) in the vicinity of the frozen
mode frequencywy. An essential characteristic determining
the magnitude of the respective electromagnetic abnormali-
ties is the dimensionless parameter
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wherelL is the length of the primitive cell of the photonic
crystal. For instance, periodic stacks made of different con-
stitutive materials and having completely different geometry,
L display, nevertheless, very similar behavior in the vicinity of

FIG. 2. A simplest periodic magnetic stack supporting asymmet—the frozen mode frequency, provided that they .have compa-
ric bulk dispersion relation. Each primitive cel=2A+F com-  rable values of the parametgrfrom Eq.(4). For this reason,
prises three layers: two anisotropic dielectric layers 1 and 2 ofill numerical examples considered in this paper are based on
thicknessA and with misaligned in-plain anisotropy, and one mag-2 single magnetic periodic stack shown in Fig. 2 and de-
netic layer of thicknes§ and magnetization shown by the arrows. Scribed in detail in Appendix A. These examples illustrate the
The misalignment angle between adjacent layers 1 and 2 must B#niversal features of electromagnetic behavior of all unidi-
different from 0 andm/2. rectional photonic crystals.
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FIG. 3. Asymmetric dispersion
i relations of the periodic structures
{ slightly modified compared to that
R related to Fig. 1. In both cases, the
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stationary inflection point of Fig.
1 evolves into a simple inflection
point with wy, (k) #0: (a) the ra-
] tio p=F/A of the layers thick-
T nesses exceeds the the critical
‘,. valuep, by a third;(b) p<pg by a

] third. Here py is the “unidirec-
1 1

i

tional” ratio corresponding to the
situation in Fig. 1.

Frequency o

Wi

\.‘g

.-.‘

!

H %

o 1 1 1

3.14 6.28 0 3.14 6.28

Wave vector k Wave vector k

-

If any of the physical or geometrical parameters of a uni-zen mode cannot exist in periodic stacks, either magnetic or
directional stack is altered, the stationary inflection pé8t  nonmagnetic, with symmetric dispersion relationgk)

can turn into a regular inflection point corresponding to a:w(_lz)_

finite group velocity, as shown in Fig(&, or a pair of close On the other hand, whenever the electromagnetic disper-
inflection points, as in the 3|tu§1t|on in Fig(3. This blur§ sion relation has a stationary inflection poi® (i.e., the
gir:gcvt\:g?gﬁgs the effects associated with electromagnetic Uozen modg it always displays the property of unidirection-

; _ . ality at the same frequency. This implies that a hypothetical
Atfirst sight, the existence of the frozen mode related t0 gjigpersion relation in Fig.®) having a stationary inflection
stationary inflection point3) does not require the spectral

oint atw= wg but not displaying electromagnetic unidirec-
relation in Fig. 4a) would have a pair of stationary inflection ca|| that the unidirectionality means the existence of propa-

points, although there would be no spectral asymmetry, leating modes with only negativéor only positiveé group
alone unidirectionality, in such a case. But in fact, the situavelocity at a given frequency and given direction of propa-
tion similar to that in Fig. 4a) cannot occur regardless of the gation.

complexity of the composite structure. At any given fre-

asymmetry(1). Indeed, a hypothetical symmetric dispersiontonality at the respective frequency, cannot occur either. Re-

The above statements suggest a strict one-to-one corre-
guency, there cannot be more than one stationary inflectiogpondence between the existence of the frozen mode and the
point (3) in the electromagnetic spectrum. Thereftiie fro-  property of unidirectionality at the same frequency in peri-

a) b)

FIG. 4. Hypothetical dispersion relations,
which cannot exist in any periodic stack regard-
less of its complexity(a) symmetric dispersion
relation with two stationary inflection points at
the same frequencyy; (b) asymmetric disper-
sion relation with stationary inflection poifithe

frozen modg¢ at w = wq, but without the property
of unidirectionality at the same frequency.
Wave number k

Wave number k

Frequency ®

Frequency ®
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Unidirectional slab Unidirectional slab
V(@) : ¥, (2)
<= E :
Y (2)=¥_(2)+¥_(2) D Y=Y (2)+Y (@) Rl
ex ev : z
— : : <=
¥ (2) ¥ (2)
> 7 —————*=Z

FIG. 6. Backwardright-to-left) normal incidence on the surface
of a semi-infinite unidirectional slab with the dispersion relation in
Fig. 1; the frequencyo lies within the rangew,<w<wy. V(2)
andWVi(z) are the incident and reflected waves in vaculifgi(z)
andWy(z) are the extende@With u<0) and the evanesce(with

Im k<<0) contributions to the transmitted wa¥e;(z).

FIG. 5. Forward(left-to-right) normal incidence on the surface
of a semi-infinite unidirectional slab with the dispersion relation in
Fig. 1; the frequency lies within the rangew,<w<w,. ¥,(2)
andW(z) are the incident and reflected waves in vacuim,(z)
andV,(z) are the extende@Wwith u>0) and the evanescefwith
Im k>0) contributions to the transmitted wa¥e(z).

odic layered media. This is a consequence of the fact that th‘é{iﬂ: thefz ?ﬁ(is i? EQ?éZ) a_rsd(?). Du;e ttr? the spect(;al_ as_,(yj/m-
dispersion relatior (k) of a periodic stack is determined by metry ? d .eFS.a 6 € sl uatlortw) 0 'te c;gf;/erset |ndC| ﬁlnge
characteristic equation of the fourth degree. Indeed, at gresented In Fig. © appears 1o be quite different and will be

given frequencyw, there must be a total of four real and considered later on.

) > o Let §>0, Sg<0 andS; =0 be the energy flux of the
complex solutions for the wave vectkfz. Taking into con- . ident (W,), reflected @) and transmitted ;) waves,
sideration that a stationary inflection poif® is always as-

. . ; . ~respectively. The energy conservation yields
sociated with a triple real root of the characteristic equation, P 4 9y y

one can come to the following conclusions: S +Sk=5S; (5)
(i) There cannot be more than one frozen mode at the )
same frequency,. For instance, the dispersion relation in Of, equivalently

Fig. 4(a) showing a couple of inflection points at the same B B _
frequency cannot occur. Sr=15, SR=-pS, p=1l-71, (6)

(ii) There must be one and only one additional eigenmodgyhere r and p are the normal transmittance and reflectance
at the frequencyn, of the frozen mode with the wave vector of the semi-infinite slab, respectively €0r<1,0<p<1).

k different fromk,. For instance, the dispersion relation in Assume that the wave frequenaylies within the frequency
Fig. 4(b) showing three additional eigenmodes at the fre-znge

guency of the frozen mode, cannot occur either.

Detailed consideration of the bulk electromagnetic spectra wa<ow<wy (7)
in infinite periodic gyrotropic stacks is presented in Sec. Il,. ) o
where we thoroughly analyze a peculiar behavior of the exin Fig- 1. In such a case, the transmitted walvg(z) inside
tended and evanescent modes in nonreciprocal periodi@€ Slab is a superposition of one extendgdopagating
stacks. Emphasis is given to the vicinity of stationary inflec-Bloch eigenmode¥ ¢,(2) (the one withu>0) and one eva-
tion point where the phenomenon of unidirectionality occursNeéscent mode¥e,(z) (the one with Ink>0), as shown in
Importantly, if the frequencyw exactly coincides withw, F]g. 5. !Evanesqent.elg.enmodes, which are not shown in the
from Eq. (3), the electromagnetic field inside the unidirec- dispersion relation in Fig. 1, do not contribute to the energy
tional periodic array does not reduce to a linear superpositioffux; therefore the extended eigenmatte,(2) is the only
of canonical Bloch eigenmodes. The latter peculiarity is re-0n€ contributing to the energy flu transmitted inside the
lated to the triple degeneracy of the stationary inflectionSlab. In the case of a single propagating mode, the energy
point. The results of Sec. Il are further applied to semi-flux Sy can be expressed in terms of the mode energy density
infinite and finite unidirectional slabs. Wex and its group velocity from Eq. (2)

=UWpy. 8
B. Electromagnetic properties St ex ®
of a semi-infinite unidirectional slab The fact that the group velocity vanishes asv— wg, im-

The phenomenon of unidirectionality is associated withpIIeS two p0_55|_ble scenarios, deper!dlng on whether the en-
ergy flux S; inside the slab also vanishes @as- w,.

unique electromagnetic properties of periodic media in the The most obvious scenario would be
vicinity of the frozen mode frequenay,. Some preliminary
conclusions can be drawn from the energy conservation con-
sideration. Consider a plane electromagnetic wave impinging
on the surface of a semi-infinite unidirectional photonic crys-which implies a total reflectance of the incident wavewat
tal, as shown in Fig. 5. The directianof wave propagation = w,. Such a behavior would be similar to what commonly
is perpendicular to the photonic slab boundary and coincidesccurs in any semi-infinite photonic slab in the vicinity of a

S$i—0,7—0, asw— wq, 9)
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a) b)
O % ) O % )
0.8 1 0.8}
) | ) o
o o
L5 =
£ £
E E FIG. 7. Transmittancer, of
& g semi-infinite unidirectional slab vs
= = frequencyw (in units of c/L) for
the case of forward incidence
shown in Fig. 5. The characteristic
0 Frequanty & 0 —— frequencies are explained in Fig.
1. The incident wave polarization
" is: (a) linear, with E|x; (b) linear,
C . = .
) with E|ly; (c) elliptic, correspond-
o, w, o, o, w, , ing to maximal transmittance at
0.8 ] osl | ] = wo; (d) elliptic, that produces
3 | 3 | a glngle extended mod& . (2)
= = inside the slab(no evanescent
E E mode contribution
[2] [2]
= | =
8 g
= [
0 0
Frequency o Frequency w

photonic band edge, where the group velocity of the exally increases until reaches its saturation value
tended eigenmode also vanishes. Specifically, referring to the ,
example in Fig. 1, we have in the vicinity of the photonic [V e(2)|?~ |~ wo| 2" 12

band edge ab = wy, The distancd from the slab boundary, at which the wave

intensity approaches its maximum valde), is also strongly

dependent ohw — w|,

as illustrated in Fig. 7. This common situation occurs in any

semi-infinite photonic crystal near photonic band edges. Pw
By contrast, it turns out that in the vicinity of the frozen ~ (%

mode frequencyn, we have, instead of Eq9),

Si—0, 7—0, as w—wp (10

13
) (0—wo) ™Y . (13
K=k

S —S,>0, 7—7,>0, Wy—, as o—wp. (11) Relatively small amplitude of the electromagnetic field
¥,(2) in the transient regioz<<| is due to a destructive

In such a case, the incident waydg with the frequencyw interference of the nearly frozen modé,,(z) and the eva-
close towy can enter the semi-infinite unidirectional slab nescent modd’,(z) with Rek>0. As illustrated in Figs. 8
with little or even no reflectandesee Figs. @),(c) where the and 9a) and (b), both contributions have huge and nearly
transmittancer remains finite in the vicinity otvg]. Having  equal and opposite values near the slab boundary, so that
entered the slab, the incident wave converts into nearly frotheir superpositionV+(0)=® =, +d,, atz=0 is rela-
zen extended mod#d,,(z) and slows down dramatically. tively small, as shown in Fig.(®). The destructive interfer-
Immediately upon entering the slab, the wave amplitudeence allows to satisfy the boundary conditi®il) at the
|¥+1(2)|? is limited, as shown in Fig.(@®), but then it gradu-  semi-infinite slab boundary. At>1 the contribution of the

Resulting field Extended component Evanescent component FIG. 8. Amplitude of the re-
o - - sulting  electromagnetic field
© 50 ¥2(2) 50 ¥ (2) s ¥2 (2) ¥1(z) and its extended and eva-
] nescent component¥ ., (z) and
3 V¥, (2) inside unidirectional slab.
5 40 40 48 zis the distance from the slab sur-
3 face in units ofL. Frequencyw is
& 20 20 20 close to w, (specifically, w— wq
=0.050,). The amplitude|¥,|?
0O 10 5 i 0O 1o 56 55 0O 6 P 85 of th(_e incident radiation is equal
Distance z Distance z Distance z to unity.
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a) Extended component

b) Evanescent component
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evanescent mod&.,(z) decays exponentially, while the
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FIG. 9. Destructive interfer-
ence of the extended and the eva-
nescent components of electro-
magnetic fieldd;=W¥(0) at the
surface of semi-infinite unidirec-
tional slab for the case of forward
incidence: (@) extended (nearly
frozen  contribution  |dg,)2
=|¥,,(0)|? for E|y; (b) evanes-
cent contribution | d,)?
=|We(0)|? for E|ly; (o) the re-
sulting field amplitude ||
=|Dgyt Dy, |2 for Ely; (d) the
resulting field amplitude foE||x.

The effect of unidirectional freezing proves to be rather

contribution of the extended modk,,(z) remains constant robust when some physical or geometrical parameters of the
and huge. As a result, the total electromagnetic field amplioriginal unidirectional array are slightly altered. For instance,
tude¥(z) inside the slab gradually increases with the dis-when the relative thickness=F/A of the layers in the pe-

tancez until reaches its maximum value df,(z) from Eq.
(12), as illustrated in Fig. @). If the frequencyw exactly
coincides withwg, the transmitted wavél'(z) inside the

riodic structure in Fig. 2 is increased or decreased by a third
[the respective modified dispersion relations are presented in

unidirectional slab is not a superposition of canonical Bloch 16000
eigenmodes, and its amplitude inside the slab diverges

at w=wy: |V1(2)|>~2%, asz—wx (14
12000
as shown in Fig. 10.

The phenomenon described by formu(a®) and(14) and
illustrated in Figs. 8 and 10 can be viewedwasdirectional
freezing of the incident electromagnetic wave inside the
semi-infinite unidirectional slab. It is accompanied by a dra-
matic slowdown of the transmitted wave inside the slab, a
well as a huge increase in its amplitudeemarkably, the
transmittancer, of the semi-infinite slab remains finite and
can be even close to 1008y contrast, in the situation when
the plane electromagnetic wave of the same frequancy
close or equal tawg impinges on the surface of the same
unidirectional stack but from the opposite direction, as

8000

amplitude

eld

F

4000

shown in Fig. 6, nothing extraordinary occurs. The incident 0
wave gets partially reflected, and the rest continues inside thi
slab in the form of the extended Bloch eigenmoHey(z)

with finite group velocity u(k;)<0 and finite amplitude

Distance z

FIG. 10. Amplitude|¥(z)|?> of electromagnetic field inside

|Wex(2)|?=|Pey/? as illustrated in Fig. 11. Such an ex- unidirectional slab vs the distane(in units of L) from the slab
treme asymmetry between the cases of forward and baclsurface; the frequency coincides with the frozen mode frequency

ward incidence justifies the teromidirectional freezingor
what happens in a semi-infinite unidirectional slab.

165210-6
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a) Extended component C[)EX b) Evanescent component @EV
1.54
@, 0.816
()
©
2
'EL
® FIG. 11. The amplitude of
E electromagnetic fieldb; and its
- extended Qgx) and evanescent
(Pgy) components at the surface
0.806 of semi-infinite unidirectional slab
1.51 Frequency® Frequeniya in Fig. 6 for the case obackward
incidence:(a) extended contribu-
; 2 =1y
¢) Resulting field &2 d) Resulting field @2 tion [®ex|* for Efly; (b) evanes-
cent contribution ®¢|? for E|y;
1.898 1 (c) the resulting field amplitude
1.434 ] Do |Dr]?=|Dey+ Deyl? for Elly; (d)
§ the [esulting field amplitudpb |2
£ for E||x.
Q.
E
©
k]
o
[TH
1.426 Wy ] 1.892
Frequency w Frequency w

Figs. 3a) and (b), respectively, the frozen mode blurs, but We consider the basic features of extended and evanescent
the surge in electromagnetic field amplitude inside the slaleigenmodes characteristic of nonreciprocal periodic arrays.
remains quite significant—more than an order of magnitudeParticular attention is given to the effect of unidirectionality.

In Sec. IV, we consider the transmittance of a finite gyro-The results of this section are used in the following study of
tropic photonic slab, which is a finite fragment of a unidirec-the electromagnetic properties of unidirectional slabs.
tional photonic crystal. As long as the number of layers con-
stituting a finite slab is small, the electromagnetic properties
of the slab does not show any indication of the unidirection-
ality of the respective infinite or semi-infinite periodic stacks. ~Electromagnetic properties of gyrotropic layered media
But when the numbeN of the elementary fragmentsin ~ have been a subject of numerous publicatisee, for ex-
Fig. 2 is large, the finite slab does show some distinct behav@mple Refs. 10-16, and references there®ur objective
ior in the vicinity of the frozen mode frequenay,. For here is to introduce those concepts, definitions, and nota-
instance, the dependence of the slab transmittance on tf@ns, which are necessary for understanding the electromag-
polarization of the incident radiation is similar to that of the netic properties of unidirectional photonic crystals. We con-
semi-infinite slab. In Figs. 13) and(b) one can see that for sider the simplest and the most important case of layered
certain elliptical polarization of the forward incident radia- dielectric media, which supports transverse electromagnetic
tion, the thick unidirectional slab becomes virtually transpar-waves with alternating field components
ent in the vicinity of the frozen mode frequenay,. This
particular polarization coincides with that shown in Fi¢c)7 E(z), H(2), D(z), B(z)Lz (15)
and provides the maximal forward transmittanceof the
respective semi-infinite slab. In addition to this, both theThe directionz of wave propagation is normal to the layers,
thick finite slab and the respective unidirectional semi-as shown in Fig. 5. In such a case, the time harmonic Max-
infinite stack become totally reflective in the vicinity @b, well equations
if the polarization of the incident wave is orthogonal to the
previous one, as shown in Figgdy and 12b), respectively. e . . o

V><E(r)=?B(r), V><H(r)=—FD(r) (16

A. Definitions and notations

Il. TRANSVERSE ELECTROMAGNETIC WAVES
IN PERIODIC GYROTROPIC MEDIA: can be recast as
ELECTROMAGNETIC UNIDIRECTIONALITY.

This section starts with a brief discussion of bulk electro- APV Lo A0 o
magnetic properties of gyrotropic periodic layered structures. UazE(Z)_ c B(2), U&ZH(Z)_ C D), 7

165210-7
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a)
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0.006

0.005

0.003

0.002

0.2 .

FIG. 12. Forward transmit-
tance of a thick unidirectional slab
with N=232 in the vicinity of the
frozen mode frequencyw,. The
elliptical polarization of the inci-
dent wave is:(a) the same as in
Fig. 7(c), that provides the maxi-
mal transmittance(b) the same as
in Fig. 7(d), that provides total re-
flectance in both cases. Small de-
viation of the extreme points from
®=wg is due to a finite thickness
of the slab.

5 0 5 -1

where, in accordance with Eql5), all the fields are two-
dimensional vectors lying in the-y plane and

g=

1 0

ol

The transverse alternating electric and magnetic fiél(ts

andﬁ(z) in Eq. (17) are related to the electric and magnetic

inductions D(z) and B(z) by common linear constitutive
relations

D(2)=¢(2)E(2), B(2)=pu(2)H(2). (18)
The Hermitian anisotropic tensors
A(Z)_ exx(Z) 8><y(z) A(Z)_ Hxx(2) Mxy(z)}
e epy@] MY u@ a2

M(2)¥(2)= 0V(2), (22)
where
Ex(2)
Ey(2)
V(z)= H(2) |
Hy(2)
. (22)
. C 0 w 2ol g
B T I 3

The transfer matrix of a layered structure

The transfer-matrix formalism is particularly useful in
electrodynamics of layered media composed of anisotropic
and/or gyrotropic layers. Below we introduce the basic defi-
nitions and notations, consistent with those of Ref. 10. More

are frequency dependent and take different values in differinformation on the subject can be found in Refs. 13-16, and

ent layers of the stack. The substitution of Efg) into Eq.
(17) gives

A&E _iwA 5 _A&H 3 (IR 2

o (Z)—?M(Z) (2); S (2)= FS(Z) (2).
(20)

The fieldsE(z) andH(z) are continuous functions af even

if £(z) and u(z) along withD(z) andB(z) are not.

The reduced Maxwell equatiori®0) can also be recast in
a compact form,

references therein.

The reduced time-harmonic Maxwell equatid@4) con-
stitute a system of four ordinary linear differential equations
of the first order. Its general solution is a linear superposition
of four eigenmodes,

W(z)=C1V1(2) +CyWy(2) + C3W3(2) + CuWy(2).
(23)
The four coefficientsC; in Eq. (23) can be uniquely

related to the four transverse field compone(®28) at a
given pointz,
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C, related to the phenomenon of spectral asymmgryFor an
extended discussion see the next subsection.
W(2)=W(2) , (249)
Cs B. Extended and evanescent modes
C, in nonreciprocal periodic stacks

whereW(z) is a nonsingular % 4 matrix 1. Characteristic equation

R Bloch solutions for the Maxwell equatiort®0) in a peri-
W(z2)=[V1(2) Vu(2) W3(2) V4(2)] (25) odic medium satisfy

comp_osed of t_he column vectows;(z) from Eg. (23). The W (z+L) =W (2), (34)
equality (24) yields a one-to-one correspondence between
the electromagnetic field componenk{z) at any two dif- wherelL is the length of the primitive cell of the periodic

ferent locationsgz; andz,, stack,k is the Bloch wave vecto(2), and ¥ (z) is the re-
. spective column vectof22). The quasimomenturk is de-
W(2,)=T(25,21)¥(24), (26) fined uniquely up to a multiple of 2/L.

where the & 4 matrix It follows from the definition(26) of the T matrix that

T(29,20) =W(zo) W~ (2,) 27 U (z+L)=T(z+L,2)V(2). (35
is referred to as the transfer matff.

In homogeneous media, the transfer matéig) has trans- A KL
lation symmetry T P =e""Dy, (36)

Comparing Egs(35) and(34) we get atz=0

(28) Where'T'L='T'(L,O) is theT matrix of the primitive cell of the
periodic stack, whileb,=W¥,(0) is one of the four Bloch

whereT(z)=T"1(—2). In addition, in homogeneous mate- solutions¥(z) for the reduced Maxwell equatiort®0) at

rials without linear magnetoelectric effect, the mafiigz)  2=9- o _
andT-1(z) are similar Equation (36) implies that the Bloch eigenvectod

uniquely relate to those of the transfer matiiix. The re-

?(22_21):-’[\-(22,21)1

T(z)=uT-Lzu?, (29) spective four eigenvalues
implying that L=ekit i=1234 (37)
detT(z)=1. (30) of ?L are the roots of the characteristic equation
We also introduce the transfer matrix of theh homoge- de( T — () =F({)=*+ P33+ P2+ P +1=0,
neous layefl ,= T(z.,), Wherez,, is the layer thickness. The (38

single-layer transfer matrif(m depends on the layer thick- where, according to Ref. 10,
nessz,, and material tensors,, and z,,. The explicit ex- . .
pressions for thél matrices of anisotropic and gyrotropic P1=P3, P,=P3. (39
layers are rather cumbersome, and those we use are P'®itroducing the real coefficients
sented in Appendix A.
The T matrix of a stack of layers is the product of the R=ReP,, P=ImP, (40)

matricesT , constituting the stack
we recast Eq(38) as

To=11 T (3 F(0)= 2+ (R-IP) {3+ P2+ (R+IP){+1=0 (41)
Equations(30) and (31) imply that or, in the more symmetrical form,
M(Q)=¢ ?F(0) ="+ (R=IP){+ Pyt (RHIP){ (72

. . Lo =0. (42)
for an arbitrary stack. At the same time, the similarity rela-
tion Plugging
Te=UTSU, (33 {=cogkL)+i sin(kL)

analogous to Eq(29), may not hold for some gyrotropic in Eqg.(42) yields yet another form of the characteristic equa-
stacks composed of three or more layers. This is directlyion
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M(k)=—2+P,+2RcogkL)+2P sin(kL) +4 cog(kL) relates to the case of a frequency gap, when all four Bloch
0 43 eigenmodes are evanescéihte frequency range

where all the coefficients are now real. wp<® (5)

. in Fig. ).
2. Extended and evanescent solutions Equation(32) implies that in all cases

The coefficients of the characteristic equation are ex-

pressed in terms of the elements of the maiffix Those {1828304=1 (52)
elements are functions of the physical parameters of the co
stitutive layers and the frequenay. For any given fre-
quencyw, the characteristic equation defines a set of four Ky + Ko+ kg+k,=0. (53)
values{{1,{»,{3,¢a}, or equivalently{k,,k,,ks,k,}. Real

k (roots with|£|=1) correspond to propagating Bloch waves

(extended mode@swhile complexk (roots with|¢|# 1) cor- C. Spectral symmetry vs spectral asymmetry
respond to evanescent modes. Evanescent modes are relevanif all the coefficients in the characteristic equati(88)
near photonic crystal boundaries and other structural irreguare realthat amounts td®=0 in Eq. (40)], then for a given

S, equivalently

larities. frequencyw
The characteristic equatiqd?2) implies that for any given
frequencyw, {¢1.82.83.8ab =141 .85 .45, 84 (54)
if ¢ isaroot, then IJ* is also a root (44 or, in terms of the Bloch wave vectors

or, equivalently, if P=0, then {ky,k.ks.kab={—K},—K§,—k5,—kj}.

if k isasolution, thelk* is also a solution. (45) (55
In view of the statemen(44), one has to consider three dif- Observe that the relatiofb4) together with Eq(44) ensure
ferent situations. The first possibility, similarity of the matrixT andT[l,
82l =182l =1Zal =144l =1, (46) if P=0, then T =UT U

or, equivalently, Conversel
\ y

a=KE, ko=kd | ke=k5, ke=K} ,

relates to the case of all four Bloch eigenmodes being ex-
tended(see, for instance, the frequency range

if P=#0, then T, #UT_ U~ foranyU.

In terms of the dispersion relatian(k), the relation(55)
0<w<w, (47 together with Eq(45) imply the spectral reciprocityspec-

tral symmetry of the Bloch eigenmodes,
in Fig. 1).

The second possibility, if P=0 then

[Gal=182l=1; £4=10C5 5 where |{5],|44[#1, (48)
or, equivalently

{w(kl)!w(k2)!w(k3)lw(k4)}
={w(—Ky),0(—Kp),0(—Ks),w(—Ky)}. (56)

In view of the symmetry consideration of Ref. 10, the rela-
relates to the case of two extended and two evanescetibn (56) holds for all nonmagnetic and for the majority of

ki=Kk¥, ko=k%, ky=k%, where ks#k%, Ko#k?,

modes(the frequency range magnetic photonic crystals.
The appearance of complex coefficiel®s in Eq. (38)
W< W< Wy (49 [that amounts td®+0 in Eq. (40)] leads to violation of the
in Fig. 1). relation (55) for a given frequencyp,

The last possibility,
P bé if P#0 then {kq,ko,ks,ks}#{—K],—k3,—k3,—kj},

{=U0T5 La=1105 5 where |41, | 5], 23] [£a # 1, (57)
50
_ 50 which in terms of the dispersion relatian(k) implies the
or, equivalently, spectral asymmetry
ki=kz, ke=kj, where ki#ki, ko#kz, ks#K3 .k, if P#0 then {w(k;),w(ky), (k) 0(ky)}#{w
#Ka s (—ky),0(—Kz), 0 —K3), 0(—ky)}. (58)
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A simplified definition of the spectral asymmetry is given by andP at w = wy. Those relations requirg, to be a triple root

Eq. (1), wherek is presumed real. of the characteristic polynomid@({) at o= wy, i.e.,
Regardless of the spectral symmetry or asymmetry, the
evanescent modeghose withk#k*), if then exist, must Fo(0)=*+(Ry—iPg) B+ Qo+ (Ry+iPg){+1
comply with the relation
=({—{)({—L0)®=0. (62)
{w(ky), ... }={oK]), ...} (59 In view of Egs. (52 and (44), the values{, and {; are

related by

following from Eq. (44).

A specific nu_merical e_xample of asymm_etric electromag- (= 563, 1Zol=124]=1 (63)
netic spectrum is shown in Fig. 1. The physical parameters of )
the corresponding periodic stack are chosen so that at a cedt. equivalently,
tain frequencyw, the dispersion relatiom (k) of one of the
spectral branches develops a stationary inflection point. The ki=-3kg, Imkg=Imk;=0. (64
corresponding frequency is associated with the electromag- . ) .
netic unidirectionality. In the next subsection, we take a A Small deviation of the frequency from its special

closer look at this particular situation. valuew, changes the coefficien®), Qq, andP, in Eq.(62)
and removes the triple degeneracy of the solugignTaking

D. Stationary inflection point into account Eqs(60) and(61), we have

The dispersion relatiom(k) of an arbitrary periodic stack IEldw 1/3
is determined by the characteristic equatiéd), where the {—o~—(6 1/3( _) (00— wo) Y3,
coefficientsR, Q, andP are functions of the frequenay. PFlag3 (=t =
Using the characteristic equati¢l), we can define the sta- o 0
tionary inflection point,=exp(koL) in Eq. (3) as one sat- whereg=1,27/3 g~ 2713, (65)

isfyin
ing or, in terms of the quasimomentukn
F(£0)=0, F({0)=0, F;({0)=0 (60)

1 —1/3
k—k %(—w”’(k )) (0= wo) %,
with an additional condition °le ° °

where £=1gi(2m3) g=i(2/3)

FZ’Q(ZO)¢0. (61) (66)
Equations(60) impose certain relations upon the valuRs, We can also rearrange E@6) in a different form, which is
Qo, and P, of the frequency dependent coefficie®RsQ , actually used for further references,

Kex~Kot 629" (ko) (0= w0)

1 3
kev~k0+ z(6)1/3[(1)/rr(k0):|71/3((1)_ (1)0)1/3+i \/7_61/3[wrrr(ko)]l/3|w_ (1)0|1/3,

(67)
1 V3 .
kEVm k0+ E(6)1/3[ w///(ko)]—l/3(w_ w0)1/3_| 761/3[ wm(ko)] l/3|w_ w0|1/3.
|

The real quasimomenturk., in Eq. (67) relates to the ex- Eigenmodes at frequencw, of stationary inflection point
tended modeV.,(z), which Furns into the frozgn mode at  onsider four eigenvectors,
w=wq. The other two solutionsk,, andkg,=kg,, corre-
spond to a pair of evanescent modds,,(z) and Vey(2),
with positive and negative imaginary parts, respectively. Dy =Wy (0), Py, =Wy (0),
Those modes are truly evanescérg., have Ink#0) only
if w# wy. But it does not mean that ai= wg, the eigen- _ B
modesV,(z) and Vg (z) become extended! P, = Wi, (0), Py, =Wy, (0), (68)
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of the transfer matrixT, from Eq. (36) in the vicinity of 9 9 _ _

stationary inflection point. As long as+ w,, four eigenvec- ﬂwk(z):elkzﬁ Y(2) +izy(z)€ (73
tors (68) comprise two extended and two evanescent Bloch

solutions. One of the extended modeay,d)kl) corresponds and

to the nondegenerate real ragt=e’*1- of the characteristic

equation with the negative group velocityk,)=w’(k;) 9? o P 0 ) ”
<0, as shown in Fig. 1. This solution, relating to the back- =,z Yk(2)=¢€ Z% di(2) +ize Z@ ¥(2) — 2 (2)e™
ward propagating mode, is of no interest for us. The other (74)

three eigenvectors of, correspond to three nearly degener-

ate rootg(65). As » approaches,, those three eigenvectors are also eigenmodes &fl with the same eigenvalue.
not only become degenerate, but they also become colinearherefore all three solution&1), (73), and (74) are eigen-

modes ofM with the same eigenvalue, . For further ref-

i, iy, Py az Py, as w—wo, (69 grances we recast those three eigenmodes in the following
wherea, 4 and a4 are complex scalars. The latter important form:
feature relates to the fact that @t wq, the matrixT ()
- ) v, (2),

has a nontrivial Jordan canonical form, 0
4 0 000 Woi(2)="V (2) +izW (2), (75)
0 &% 1 0of

TWw)=Ul 5 o . |V (O Vo A2) =W\ (2) +i2W, (2) - 220 (2),

0 0 0 & where

and therefore cannot be diagonalizede, for example, Ref.

17). It is shown rigorously in Appendix B, that the very fact W, (Z)Z(idfk(z)) e'koz and ¥, (z)

that the T eigenvalues display the singularit$5) at w 0 Kk K=k, 0

= wq implies that the matrix' (wg) has the canonical form

(70). One of the consequences of E@0) is that the matrix 32 Ky

T.(wp) has only two(not four!) eigenvectors: = %'//k(z) ewo
D CDkl, corresponding to the nondegenerate rogtand k=k

@ <ka, corresponding to the triple rogp and describing are auxiliary Bloch functiongnot eigenmodées Observe that
the frozen mode. only the first of the three solution@5) is a canonical Bloch

The other two solutions of the Maxwell equati@?l) at  ejgenmoddthe frozen model, (z)]. The other two solu-
o= w, are general Floquet eigenmodes which do not rEd“Cﬁons diverge as the first and tﬁe second powez, aespec-
to the canonical Bloch form. Yet, they can be related to thptively. They are referred to as general Floquet r’nodes.
frozen mode\lfko(z). Indeed, following the standard proce- Deviation of the frequencw from wy removes the triple

dure(see, for examp|e, Ref. J..SCOHSider an extended Bloch degenerac)(?O) of the matrixTL, as can be seen from Eq

solution (65). The modified matrixT, can now be reduced to a diag-
" onal form with the set68) of four eigenvectors comprising
V()= (2)e™, where iy (z+L)=i (L), Im k=(071) two extended and two evanescent Bloch solutions.
of the reduced Maxwell equatioi2l). By definition I1l. SEMI-INFINITE UNIDIRECTIONAL STACK

R A. Transmittance and reflectance of a semi-infinite stack
MW¥\(2) = w(k)¥(2). (72 . . L
Consider plane electromagnetic wa¥g(z) impinging

Assume that the dispersion relatior(k) in Eq. (72) has a nhormally on the surface of a unidirectional semi-infinite slab,
stationary inflection point3) at k=k,. Differentiating Eq. as shown in Fig. 5. In vacuuatz<0), the electromagnetic

(72 with respect tdk gives, in view of Eq.(3), field ¥ (z) is a superposition of the incident and reflected
waves
. d d .5 _
at k=kq: Mﬁ‘lfk(z)=w(k)ﬁllfk(z); M%\Pk(z) atz<0: ¥V (2)=V¥,(2)+¥x(2) (76)
where
&2
=w(k) —V(2).
(k) =5 V(2

) )
\P,(z)=¢>|exp{Fz) , ‘IfR(z)=<DRex;{ - ?z),
This implies that ak=k,, both functions (77
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= Er« B. Overview of the results
Ly Ery A general idea of what happens when a plane electromag-
O, =T (0)= _E' , Pr=TR(0)= £ ' , netic wave of the frequencw close to the frozen mode
Ly Ry frequencyw, impinges on the surface of a semi-infinite uni-
E 4 —Egrx directional slab, is provided by the numerical examples

(78 shown in Figs. 7 and 8.

First, the transmittance, of the semi-infinite unidirec-
tional slab remains finite within the frequency rangge<w
<wy,, including the frequencyw, of the frozen mode, as
seen in in Fig. 7. By contrast, the transmittangeof any
semi-infinite slab always vanishes in the vicinity of a band

. _ edge(see, for example, the vicinity @ = w, in Fig. 7). That
atz>0: Wr(2)=W1(2)+¥2(2). (79 he incident wave with the frequenay, can freely enter a
The eigenmodedl;(z) and W,(z) can be both extended, semi-infinite unidirectional slab, in spite of the fact that the
one extended and one evanescent, or both evanescent, deave group velocity inside the slab vanishesvat wg, has
pending on which of the three cadd$), (48), or (50) we are  far-reaching implications.
dealing with. In particular, if the frequenay lies within the Second, the field amplitude inside unidirectional slab can
rangew,<w<wy, in Fig. 1, we have the situatio@8), and rise by several orders of magnitude in the vicinity of the
the transmitted electromagnetic waWe (z) is a superposi- frozen mode frequencygy, as shown in Figs. @ and 10.
tion of the extended Bloch eigenmodie.(z) with group  This remarkable feature will be discussed in great detail later
velocity u>0 and the evanescent modeé,,(z) with Imk in this section.
>0, Third, in the vicinity ofwg, the density of mode has much
stronger anomaly compared to that of the vicinity of a band
atz>0: Ui(2)=Ve(2) + Ve, (2). (80)  edge frequency. This makes all the effects associated with
the frozen mode much more robust.

Finally, the transmittance as well as the reflectance coef-

ficients develop a cusplike singularity at= wq; the magni-

. L tude and the sign of this singularity being dependent on the
eigenmodes75), one of which is extendedhe frozen mode olarization of the incident wave. In particular, if the incident

\Pko(z)] and the other two cannot be expressed in canonic ave polarization is chosen so that only a single extended

Bloch form (34). In what follows we assume that can be modeW,(z) continues inside the slgmo evanescent con-
arbitrarily close but not equal teg, unless otherwise is ex- tripution to W(2)], then the transmittance, at w=w,
plicitly stated. o o drops down to zero, as shown in Figdy. But, if the inci-

_ Extended and evanescent modes inside a periodic gyrotr@fent wave polarization is orthogonal to the previous [aree
pic medium are defined by Eq36). Knowing the Bloch  Fig 7(c)], the transmittance of the unidirectional slab is
eigenmodes inside the slab and using the standard electrgraximal. The explanation for such an unusual behavior is
magnetic boundary conditions given further in this section. Of course, if the incident wave

Db+ (81) polarization .is chogen so that only a single evaneSt_:ent_ mode
L V,(2) continues inside the slalmo extended contribution

at the slab surface a=0, one can express the amplitudesto ¥1(2)], the transmittance of any semi-infinite slab is
®; and ®y of transmitted and reflected waves in terms ofstrictly zero regardless of the frequeney
the amplitude and polarizatioh, of the incident wave. This
gives us the transmittance and reflectance coefficients ofC. Frequency dependence of electromagnetic field amplitude
semi-infinite slab, as well as the electromagnetic field distri- inside unidirectional slab
bution ¥+(z) inside the slab, as functions of the incident
wave polarization.

The transmittancer, and reflectance, of semi-infinite
slab are defined as

E, and Eg are complex vectors describing two elliptically
polarized waves.

The transmitted wav&+(z) inside the stack is a super-
position of two Bloch eigenmodes,

The only exception to Eq(80) is when the frequency
exactly coincides with the frequeney, of the frozen mode.
In such a case¥'{(z) is a linear combination of the Floquet

According to Eq(80), the transmitted wav& 1(z) inside
the stack is a superposition of one extendeearly frozen
modeV¥.,(z) and one evanescent mode,,(z). Since eva-
nescent modes do not transfer energy, the extended mode

S(d+) S(dg) WV.(2) is solely responsible for the energy flux inside the
=53y PeT TS Tet+pe=1, (82  stack. The energy density,, associated with the extended
S(®) S(®) V. (2) can be expressed in terms of its group velocity
where u(k)=w'(k) and the energy density flu(P.,),
C Wey,=S(Pe )/’ (k), where S(®.,)=S(P1)=7.5(D,).
S) = (B, By ex=S(Pe)/ ' (K) (o) =S(P7) =7 (%3)

is the energy density flux averaged over the period of oscil- In line with Eq. (3), in the vicinity of the frozen mode
lations. frequency
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1
(K)o~ g " (ko) (k= ko)®

that gives
1 623
o' (k)~ Ew”’(ko)(k—ko)2~7[w”’(ko)]”3(w—wo)2/3-
(84)
Plugging Eq.(84) into Eqg. (83) yields
2
Weﬁ67,3(Te8|)[w”’(ko)]‘1’3(w—wo)‘z’s, (85)

whereS, = S(®)) is a fixed intensity of the incident wave,
is the transmittance coefficiel®2) depending on the inci-
dent wave polarization. Formul&5) implies that the ampli-

tude®,, of the extended nearly frozen mode inside the stack

diverges in the vicinity of the stationary inflection point

Doy~ VWey~ VTeSI[wW(kO)]_l/6|w_w0|_1/3 as w—wg.
(86)

The divergence of the extended mode amplitdelg in
the vicinity of the frozen mode frequenay, imposes a simi-
lar kind of behavior on the evanescent mode amplitlide.
Indeed, the boundary conditidB1) requires that the result-
ing field amplitude® =&, + P, at the slab boundary at
z=0 remains limited to match the sudn =®,+ &y of the
incident and reflected waves outside the stack=a0. The
relation (81) together with Eq.(86) imply that there is a
destructive interference of the extendéd, and evanescent
d., modes at the stack boundary

Doy~ )~ 3

(87
so that® = d,,+ P, remains limited. The expressida?)
is in compliance with the earlier made statem@® that the
column vectorsb,and®,, become colinear as— w.

The numerical illustration of the behavior of the field am-
plitudes|®.,|?, |De,|? and |P1|2=|Dq,+ P, |? at the slab
surface is illustrated in Figs.(8—(c), respectively.

b, ~(w—wo as w—wg

D. Space distribution of electromagnetic field
inside unidirectional slab

SinceW,,(z) is an extended Bloch eigenmode, its ampli-
tude| ¥ .,(2)| remains constant at>0, while the amplitude
of the evanescent contributiobi.,(z) to the resulting field
W¥,(z) decays as

at z>0: |Wg,(2)|=|d,|e dMke, (89

PHYSICAL REVIEW B 67, 165210(2003

3
Im ke, ~ gﬁl’ﬁ o (k)] Mo ag%. (89

Plugging Eq.(89) in Eq. (88) gives

3
at z>0: |V, (2)|=|Dg,] 1—2\/7_61’3[w”’(k0)]‘1’3

22| w— w0|2/3
(wm( ko))2/3

which together with Eqs(86) and (87) yields the following
asymptotic expression for the evanescent mode amplitude as
function of w andz

VTeS)

V3

_ 2761/3[w///(k0)]—1/3+ O(

><|w—a)o|1/3+0(

|w—wo| 13

|W e, (2)]

zle_ w0|1/3
(wm(ko))2/3

(90

Finally, plugging¥.,(z) from Eq.(86) and¥,(z) from Eq.
(90) into V1(z2) =T (2) +V¢,(2) yields

TeS| \/_56 1/3

|‘;[,T(Z)|%|(I)T| +Z[(1)W(k0)]1/2 2

as w—woq,

91
where, according to Eq87),

|®T|<|q)ex|~|q)ev|-

The asymptotic expressio(®1) for |¥'1(z)| is consistent
with the eigenmodé&’, o(z) from Eq.(75), which represents
one of the two Floquet-type solutions for the Maxwell equa-
tion (21) at w= wy.

A numerical example of electromagnetic field distribution
|W+(2)|? inside the semi-infinite unidirectional slab for the
frequencyw close towg is shown in Fig. 8, while the limit-
ing cas€(91) of w= wq is shown in Fig. 10. The relatiof®1)
implies that the resulting field amplitud@ 1(z)|? increases
as the second power of the distarcgom the slab surface.
It reaches its maximum value 0¥ ,(2)|?~ (0 — wo) "2 at
z>1, where

2
I=(Imkg,) " ﬁ6_1/3[wm(ko)]l/3|w_wo|_1/3- (92)
There are two exceptions, however, merging into a single
one atw=w,. The first exception occurs when the elliptic

Therefore, as the distance from the unidirectional slab polarization of the incident wave is chosen so that it pro-
boundary increases, the destructive interference of the exduces just a single extended eigenmoblg(z) inside the
tended and evanescent modes becomes ineffective, and aslab [no evanescent contribution t#(z)]. In this case,
>(Imkg,) ! the only remaining contribution t&(z) is  W(2) reduces toV (), and its amplitudé¥ (z)| remains
the extended nearly frozen mode,,(z) with huge and in- limited and independent of. As w approacheso, the re-
dependent oz amplitude(86). spective transmittance, vanishes in this case, as shown in
Let us consider the above behavior in more detail. Ac-Fig. 7(d). The second exception occurs when the elliptic po-
cording to Eq.(67), in the vicinity of w= w, larization of the incident wave is chosen so that it produces
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just a single evanescent eigenmotig,(z) inside the slab
[no extended contribution t&(z)]. In such a case¥ 1(z)
reduces to¥.,(z), and its amplitudéW¥ (z)| decays expo-
nentially with z in accordance with Eq88). The respective
transmittance coefficient, in this latter case is zero regard-
less of the frequencw, because evanescent modes do no
transfer energy. Importantly, as approaches, the polar-
izations of the incident wave that produce either a sole ex
tended or a sole evanescent mode become indistinguishab
which is a consequence of the prope®@) of the T, eigen-
vectors. If®,q is such a polarization of the incident wave,

the maximal transmittance is reached when the inciden

wave polarization is orthogonal @, [see Fig. 7c)].

Let us see what happens if the degree of spectral asy
metry of the unidirectional periodic stack is very small. |
this situation the stationary inflection poky, wg in Fig. 1 is
very close to the band eddg,w;, . In such a case, the third
derivative " (k) along with the transmittance, of the
respective unidirectional slab at=wq are also very small.
At the same time, the ratie./w" (kp), which according to
Eqg. (91) determines the electromagnetic field distribution in-
side the slab aiv— wy, remains finite even if the quantities
7o and w” (kp) vanish. This implies that ab= wg, the char-
acter of the field distribution shown in Fig. 10 does not
change qualitatively even if

n

0’ (ko) = 0" (Ko) = 0" (ko) =0, "’ (Kp) #0.

Such a situation, however, corresponds to a degenerate ba
edge, rather than to a stationary inflection paBjt

E. Backward wave incidence
on a semi-infinite unidirectional slab

Consider now electromagnetic wave incident on the sure

face of the same unidirectional slab from the opposite direc
tion, as shown in Fig. 6. Such a situation is similar to that of
the forward incidence on theeversedslab, which can be

PHYSICAL REVIEW B67, 165210 (2003

tionality does not manifest itself in the case of the backward
incidence. Indeed, the evanescent contributibp,(z) to
¥(2) still displays a singularity ab= w, although its am-
plitude now remains limited even at= w,.

Let us take a closer look at this situation. The complex
twave vectorkgy related toWg,(z) has negative imaginary
part and is defined in Eq67),

61/3
Rev=kot —[0" (ko)1 M (@ 00) "1 V3|0~ wol 7).

Its singularity atw = wg leads to a cusplike anomaly in fre-
auency dependence of the backward transmittance of semi-
infinite unidirectional slab, similar to what we already saw in

Mhe case of forward incidencesee Fig. 7. But there is a

crucial difference: the propagating mode amplitude
|Pex(2)|=|Pex now remains limited in the whole fre-
qguency rangew,<w<wy, including the frozen mode fre-
guencywg , as shown in Fig. 11. By contrast, in the case of
forward incidence, the propagating mode amplitude
|V (2)|=| P, along with the field amplitud¢W +(2)| in-
side the stack rises enormously in the vicinity of the frozen
mode frequencywy, as shown in Fig. @. This striking
difference between the cases of forward and backward inci-
dence can be attributed to the frozen mode.

IV. AFINITE UNIDIRECTIONAL SLAB

ndStrictly speaking, the concept of unidirectionality applies
to infinite or semi-infinite periodic stacks. But in reality, if
we have a finite slab, which is a sufficiently large fragment
of a periodic unidirectional stack, the results of the previous
section can still be relevant. L& be the number of the
primitive cells in the slab, so that the slab thickn&ss
gual toLN. The approximation of infinite or semi-infinite
stack applies if

1<(LAk) <N, (94)

obtained from the original unidirectional slab in Fig. 2 by whereAk is the spectral width of the wave packet. In such a

changing the sign of thE layers magnetization or by chang-
ing the sign of the misalignment angle= ¢;— ¢, of the
anisotropic dielectric layers.

Except for some obvious modifications involving the sub-y

stitution z— — z, formulas(76)—(83) still apply here. In par-
ticular, if the frequencyw lies within the rangew,<w
<wy, in Fig. 1, the transmitted electromagnetic walre(z)
inside the slab is a superposition of the extended Bloc
eigenmodeV e «(z) with the group velocityu<0 and the
evanescent mod® g(z) with Imk<O0,

atz<0: Vi(2)=Vex(2)+Vey(2). (93

This expression is similar to E¢80), except that it involves

case, the interference of the pulses produced by internal re-
flections from the two opposite slab boundaries can be ig-
nored. The results of the previous section relate to this par-
icular case.

In this section we consider a different situation when

1<N<(LAk) . (95)

r?n particular, we can refer to the limiting caa&k=0 of a

strictly monochromatic incident wave. In this latter case the
approximation of infinite or semi-infinite slab does not hold

for any finite N, due to multiple internal reflections form the
two slab boundaries. The electromagnetic fi#lg(z) inside
the slab is now a superposition of all four Bloch eigenmodes

the other pair of the four Bloch eigenmodes. In the case o'« (2), i=1,2,3,4 for any given frequency regardless of

backward incidence, the nearly frozen moHg,(z) does not

the direction of the incident wave propagation outside the

contribute toW(z) inside semi-infinite slab. Instead, the slab. By contrast, in the ca$®4) of semi-infinite slab, there
extended contribution to the resulting transmitted electroare only two Bloch contribution&79) to W(z). At the same

magnetic fieldV (z) is nowW¥gy(z), which remains a regu-

time, we expect some noticeable electromagnetic abnormali-

lar extended mode with finite negative group velocity even aties even in the limiting cas@5), provided that the number
w=wg. It does not mean, however, that the slab unidirec-N of the elementary fragmentsin the slab is large enough.
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Transmittance of a finite unidirectional slab we skip the details and turn to the physical results. If a slab

is composed of just a few elementary cdllsn Fig. 2, its
transmittance does not show any peculiarities in the vicinity
of the frozen mode frequency,. As the numberN in-
creases, the electromagnetic abnormalities in the vicinity of
Ta=(TON. (96)  the frozen mode frequency become more and more distinct.
In Figs. 12 and 13 we present some numerical results for the
transmittance of a finite unidirectional slab comprisiNg

The transmittance of an arbitrary finite slab can be ex
pressed directly in terms of the transfer mafrixof the slab,
which in our case is defined by

Indeed, the relation

_ =32 identical elementary fragmenits This number of lay-
V(D)=Ty¥(0) ©7) ers appears to be large enough to display all the qualitative
together with the pair of boundary conditions features characteristic of a very thick unidirectional slab. The

most distinguishable new feature is that the forw@dedt-to-
V(0)=¥(0)+V¥g(0), W(D)=¥p(D) (98 right) and the backwardright-to-left) transmittance coeffi-
cients do show a strong abnormality in the vicinity of the
frozen mode frequency,. In particular, if the elliptic polar-
ization of the incident wave coincides with that of the maxi-
mal transmittance of the respective semi-infinite slabe

Fig. 7(c)], the finite slab becomes totally transparent, as
shown in Fig. 12a). A small difference between the fre-

allow us to express both the reflected walrg(0) and the
wave V(D) passed through the slab, in terms of a given
incident waveW¥,(0) from Eq.(78) and the elements of the
transfer matrixTy . It also gives the transmittance/reflectance
coefficients of the slab defined as

B |Wp(D)|? - |\pR(0)|2. - quenC):c OI']: totlalt:ransmlttance ard}, is due to a finite thick-
N, PNT o, Tntpen=1, (99 nessof the slab. _
|W,(0)] |W,(0)] At frequencies not too close te,, the electromagnetic

respectively. The above procedure is commonly used foproperties of a unidirectional slab are not much different
. ; 3-16
computation of the transmittance/reflectance coefficients of®M those of regular magnetic staclsee, for example;™
magnetic layered structurésee, for example, Refs. 13—16 and references therginn particular, at certain polarizations

and references thergirNotice that as long as we are dealing ©f the incident wave, a finite slab displays both, forward and

with strictly monochromatic incident waveAk=0), the backward resonant transmlttar_]ce even in the close proximity

transmittance/reflectance coefficieri&?) of a semi-infinite of the band edges, as shown in Fig. 13.

slab cannot be viewed as the limiting case-« of the

transmittance/reflectance coefficie®®) of a finite slab.
Since the transmittance computation for a finite slab with  As we have shown, the phenomenon of unidirectionality

a given transfer matrixy is a well-established procedure, in magnetic photonic crystals is always associated with the

V. SUMMARY
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The most graphic manifestation of the fundamental differ-
ence between the vicinity of the frozen mode frequengy APPENDIX A:
and the vicinity of a band-gap frequenay, is provided by~ GYROTROPIC STACK WITH THREE-LAYERED CELL
the simple and important case of electromagnetic wave inci-
dence on the surface of a semi-infinite slab shown in Fig. 5. Having studied numerically a number of periodic mag-
In a broad vicinity of the frozen mode frequency, including Netic stacks with bulk spectral asymmetry, we come to the
the point w=w,, the incident radiation enters the semi- following conclusion. As long as we rest_rlct.oursellves to the
infinite slab with little reflectance. By contrast, @t w,, the IO_WESt spectral 'band,.the elgctromagnetlc dlspersmn relations
same semi-infinite slab reflects 100% of the incident radiay\”th stationary mf_lecpon point computed for different stacks_
tion. This crucial difference is illustrated in Figsay—(c). In appear to be qualitatively similar to each other and to what is

fact the onlv way to transmit the radiation at frequerne shown in Fig. 1. In addition to this, since our prime interest
' y way q Y here is with the vicinity of the frozen mode frequengy, all

~wy inside the slab is to make the slab thin enough to ENassential electromagnetic features prove to be quite universal

sure strong mterf(_arence after multiple reflections from theand dependent on a single dimensionless parandefeom
two slab boundariegsee, for example, Ref. 21 and refer- Eq. (4). In the case of strong spectral asymmethyis of the
ences therein order of magnitude of unity. This circumstance allows us to

What happens in a photonic crystal at frequencies close tQse any particular numerical example to obtain a complete
the frozen mode frequenay, is that the pulse freely enters pjcture of what is going on in unidirectional photonic crys-
the slab, where it slows down by, say, two or three orders ofa|s in the vicinity of the frozen mode frequency. Example
magnitude and increases in amplitude proportionally. Thezonsidered in this section represents the simplest and, per-
the pulse slowly continues through the slab without losing itshaps, the most practical design of a periodic layered structure
distinct individuality until it reaches the opposite boundarywith the property of bulk spectral asymmetid). This array,
or gets converted or absorbed inside the slab. The fact that shown in Fig. 2, is similar to that considered in Ref. 10. As
the vicinity of the stationary inflection poin®8) (i.e., atw already noted, a particular choice of the physical parameters
~ wy) the space dispersiaay, (k) vanishes, further contrib- of the stack does not matter, as long as it provides a certain
uting to the pulse stabilityNothing like that can occur in any Vvalue of ¢.
regular photonic crystal, not supporting the frozen mobte The A layers are described by the following reduced
addition, the electromagnetic density of mode displays &rOPerty tensors:
much stronger anomaly ab~ w, compared to any other

location in the Brillouin zone including the band edges. The ~ |&xx &xy| |etdcosZp  Ssin2e
latter circumstance must facilitate the observation and utili- EA~ Exy Eyy | Ssin2¢ e—5cos2p|’
zation of the frozen mode phenomena. The above unique

featL_Jres, in a combination with the relat_lv_e sn_nphcﬂy of the_ A f x| [m+A cos2p A sin2¢
multilayered structures, can make unidirectional photonic ;= = ) ]
crystals very attractive for practical purposes. This may in- Mxy  Myy Asin2¢ n—Acos2p

clude: (AD)

e various nonlinear applicationsee, for example, Refs. . N
22 and 21, and references thejeinhich can take advantage All components ok, andu, are presumed real. Parameters
of huge amplitude of the frozen mode, in a combination withé and A describe the anisotropy in they plane, while the
high transmittance and high density of modes at the respe@ngle¢ defines the orientation of the common principle axes
tive frequency; of &, and u, in the xy plane. The misalignment angle,

e tunable delay lines, utilizing low group velocity of the — ¢, between the neighboring layers in Fig. 2 must be dif-
frozen mode, as well as its low dispersian(~0) and high  ferent from 0 andm/2. All A layers are made of the same

transmittance of the slab; dielectric material and have the same thickn&ss
« electromagnetic nonreciprocal devices, utilizing the phe- The four solutions for the Maxwell equatiof21) with
nomenon of unidirectionality itself. material relationgAl) are
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Dy 07Dy 97D, 07Dy, (A2) m=(e+8)(n=28)"" m=V(e—8)(u+A) "
where (AS)
COSop —sine o . . -
_ Substituting the eigenmodd#\2) into W(z) from Eq.
B sine B cose (A3) (25) and using the definitioi27) of the T matrix, we have
A —msine | 2 — 7,€08¢ | the following expression for the transfer matrl of an
71C0S@ — 75Sine individual A layer as a function of the layer thickneAsand

the misalignment angle:

== e+ D) (p—4),

Tale,A)=W(,A)W *(¢,0), (AB)
0o 5 A Ad
QZ—Enz—E\/(S_ J(u+A), (Ad) where
|
(cosg)e? (cosp)e™ M2 —(sing)e'n22 —(sing)e iz
Wio A (sing)e'™? (sinp)e'Ma (cosg)e'"2? (cosg)e inza -
(QD! )_ _ﬂl(Sin(P)einla nl(Sin(p)efinla —nz(COS(p)emza nz(cosw)efinza y ( )
71(Cos@)eM?  —py(cosp)e ™A —7,(sine)e"?  g,(sing)e M2
|
Substituting the eigenmodéa10) into W(z) from Eq. (25
a=®a (A8) 9 g €410) (2) q.(29

c and using the definitio27) of the T matrix, we have the

_ _ o following expression for the transfer matrik of an indi-
The F layers are ferromagneticor ferrimagneti¢ with  vidual F layer as a function of the layer thickneSs
magnetizatiorM, parallel to thez direction; there is no in-

plane anisotropy in this case, Te=W(F)W %(0), (A14)
A e ial Y where
eF=| . COME=| : (A9)
la € 18 W(F)

The real parameterg and 8 in Eq. (A9) are responsible for
Faraday rotation. AlF layers have the same thicknédss it i ot i
The four solutions for the Maxwell equatiof21) with —iemt  —je”'™ e'"2 e "

einlf efinlf _ieinzf _iefinzf

material relationgA9) are | igemt —igeimt — et peminaf |
€912, e 1D, 927D, e 922D ,,  (AL0) et —peTml —ipgenl jpem i
where (A15)
1 —i 0}
f=—F. (Al6)
—i 1 C
D= . , Opp= ) (All) . . . . -
171 72 TheT atrices off layers with two opposite signs &, are
7 —in, related by transposition of the indices 1 and 2.

Having theT matrices of both constitutive layers, one can
® obtain the explicit expression for the transfer matffix of
nl—E\/ (et a)(utpB), q2— the three-layered primitive cell in Fig. 2,

TL(QDiAlF):TA(qDllA)TA((PZlA)TF(F)- (A17)

Symbolic analysis of the transfer matitx (¢,A,F), as well

as the corresponding characteristic equati®®), has been

m=\(eta)(u+B), m=\(e—a)(n—pB)"". carried out using the computer algebra package of
(A13) “maple 7.”

%J(e—a)w—m, (A12)
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We have also conducted a number of numerical experiwhere the complex valued functior;(v), j=0,1,2,3 are
ments with this particular gyrotropic stack. When it comes toanalytic inv in a vicinity of v=0.
the vicinity of the frozen mode frequency, the general picture According to Eq.(38), the frozen mode regime at=0
is universal, provided that the dimensionless parameter can be ultimately characterized by the fact that#er0 Eq.
from Eqg. (4) is not too small. For this reason, all numerical (B3) takes the following special form
illustrations in this paper refer to a single numerical set of

material parameters of the stack chosen as follows: (L= 40)%(¢~11)=0,
forthe A layer: n;=5.1, »;=5.1, n,=1.1, 5,=1.1, where
= _3 = =
forthe F layer: n;=22.023, 7,=0.227 04, _51 Lo” lal=lbl=1 & bo, (B4)
where,=e'ko- corresponds to the frozen mode.
n,=10.724, n,=0.466 25, If the characteristic equatiofB2) takes the special form
(A18)  (B4) nearr=0, thenT (w) can be represented as follows:
with the misalignment angle . ; £1(v) 0 - ,
01— o= l4. L(wotv)=U(») ) (v), (BY)
The numerical value§A18) are practically available at fre- whereU(v) is an invertable &4 matrix depending analyti-

quencies below 1¥Hz, but otherwise they are chosen ran- I .
domly. On the other hand, having set the material parametercsa yonwv,
(A18), we must find the exact values of the layer thicknesses L(V) =+ Evt E1%+ - - (B6)
so that at some frequeney, the stack develops a stationary R

inflection point (3) and therefore displays the property of is an analytic iny complex valued functionQ(v) is a 3
unidirectionality. For the numerical valu¢a18) we found X 3 matrix depending analytically on. In addition to that,

po=F/A=0.009 536 025 9, A1) =0p+Oyv+---, Og=Lols+D, (B7)
Qo=Lwy/c=0.607 676 756, (A19)  wherel; is 3x 3 identity matrix, and
Ko=koL=2.632 925 94 Qo={,ol3+D (B8)

wherep, is the required ratio of the layer thicknesseg;is s the spectral decompositidgrelated to Jordan formf Q

the dlmlen5|onless frozen mode frgquency; #nds the the with D being nilpotent matrixsee Ref. 24, Sec)gCi.e.,
dimensionless wave vector associated with the frozen mode.

In all numerical graphs presented in this paper we use the D3=0. (B9)
dimensionless notationsL/c andkL for the frequency and
the wave vector, respectively. We would like to show that Eq(B8) is nontrivial in the

sense thaD #0 and, in addition to that,
APPENDIX B: ANALYTIC PROPERTIES A
OF THE TRANSFER MATRIX T, IN A VICINITY D2+#0. (B10)

OF THE FROZEN MODE FREQUENCY . . . o .
Q Notice that the characteristic equation f3(v) is

Consider the frequency-dependenx 4 transfer matrix

T.(w) in a vicinity of the frozen mode frequenayy,, de(Q(v)—¢l3)=0, (=€, (B1))
~ S S and, in view of Eqs/(B2) and (B4) it takes the followin
TH@)=TotvTiit -, v=0—0o; form: as(B2) (B4) 9

TLo=Ti(wo), TL1=T(w), ... . (B1) (L= o) 3 +[pav+O(v) (L &o)?
We assume the dependencelp{w) on w to be analytic in +[p1v+O(v?)]({— o) +por=0, (B12)

the vicinity of w=wg. The following considerations are
based on general facts from the analytic perturbation theory€re
for the spectra of matrices. Po#0 (B13)

The characteristic equatid8) for T, (w) has the form ) _ _
[according to Eq(66), po=6iL>% " (ky)]. In view of the

def T (w)—¢1,]=0, =€, (B2)  Caley-Hamilton theorenisee, for instance, Ref. 24, Sec.

~ . . . . . 6.2), Q(v) of the form(B7) satisfies the characteristic equa-
wherel, is the 44 identity matrix. SinceT, (o) is a 4 tion (B12). In other words, Eq(B12) holds if we substitute

X 4 matrix, Eq.(B2) can be recast as A . .
a-(82) {=Q(v) treating all other complex nhumbers as scalar matri-
O+ Py(n)BHPL(v) P+ Py(v){+1=0, (B3) ces,ie,
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[Q(v) = ol 313+ [ Q(v) — Lol 312+ p1 [ Q(v) — Lol 5]

+Ppol 37+ 0(1?) =0. (B14)

Now substitutingQ(v) = Qg+ Qv+ O(»?) in Eq.(B14) and
taking in account Eq(B8) we single out the linear with
respect tov terms getting the following matrix equations:

D2Q,+DQ1D+ QD%+ p,02+p;D=—pyl5.
(B15)
Suppose now for the sake of argument that @&1.0) does
not hold, and henc®?=0. Then Eq.(B15) turns into
DQ;D+p;1D=pols, (B16)
implying
de{DQ,D +p,;D)=detDde(Q;D+p,)=p3.
(B17)

PHYSICAL REVIEW B 67, 165210(2003

In view of Eq. (B9), detb=0, which together with Eq.
(B17) implies thatpy= 0, contradicting Eq(B13). Therefore

Eq. (B10) is correct and)y= (ol 3+ D has nontrivial Jordan
structure. In fact, in view of EqB9) Q, we have

H 1 0
Qo:éo 0 &H 1 éal
0 0 &

for some invertabl&,. Notice also that

0 1 0
Q(»=|0 0 1 (B18)
v 0 O
is an exact solution to the matrix equation
Q3(v)=vl5. (B19)
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