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Electromagnetic unidirectionality in magnetic photonic crystals
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We study the effect of electromagneticunidirectionality, which can occur in magnetic photonic crystals
under certain conditions. A unidirectional periodic medium, being perfectly transparent for an electromagnetic
wave of certain frequency, ‘‘freezes’’ the radiation of the same frequency propagating in the opposite direction.
One of the most remarkable manifestations of the unidirectionality is that while the incident radiation can enter
the unidirectional slab in either direction with little or even no reflectance, it cannot escape from there getting
trapped inside the periodic medium in the form of the coherent frozen mode. Having entered the slab, the wave
slows down dramatically and its amplitude increases enormously, creating unique conditions for nonlinear
phenomena. Such a behavior is an extreme manifestation of the spectral nonreciprocity, which can only occur
in gyrotropic photonic crystals. Unidirectional photonic crystals can be made of common ferro- or ferrimag-
netic materials alternated with anisotropic dielectric components. A key requirement for the property of uni-
directionality is the proper spatial arrangement of the constitutive components.

DOI: 10.1103/PhysRevB.67.165210 PACS number~s!: 78.20.Bh, 41.20.Jb, 78.20.Ls, 42.65.2k
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I. INTRODUCTION

A. Unidirectional photonic crystals

Photonic crystals are spatially periodic composites m
up of lossless dielectric components. As a consequenc
spatial periodicity, the electromagnetic frequency spectr
of a photonic crystal develops a band-gap structure simila
that of electrons in semiconductors and metals~see, for in-
stance, Refs. 1–6 and references therein!. Gyrotropic photo-
nic crystals are those in which at least one of the constitu
components is a magnetic material~a ferromagnet or a fer
rite! displaying the Faraday rotation.7–9 Such materials are
often referred to as gyrotropic or bigyrotropic. If a gyrotrop
photonic crystal satisfies certain symmetry conditions form
lated in Ref. 10, its bulk electromagnetic dispersion relat
v(kW ) may display asymmetry with respect to the Bloch wa
vectorkW ,

v~kW !Þv~2kW !, ~1!

as shown in Fig. 1.
The bulk spectral asymmetry~1! by no means occurs au

tomatically in any magnetic photonic crystal. Quite the o
posite, only special periodic arrays of magnetic and ot
dielectric components can produce the effect.25 An example
of a such periodic stack is shown in Fig. 2. The degree of
spectral asymmetry depends on the magnitude of circ
birefringence of the gyrotropic component, as well as
some other geometric and physical parameters of the p
odic array. Detailed theoretical analysis of the problem alo
with a number of specific examples are provided in Ref.

The property of bulk spectral asymmetry has vario
physical consequences, one of which is the effect ofunidi-
rectional wave propagation. Let us consider a transvers
monochromatic wave propagating along a symmetry dir
tion z of a gyrotropic photonic crystal. The Bloch wave ve
tor kW , as well as the group velocityuW (kW )5]v(kW )/]kW are
parallel toz. Let us denote
0163-1829/2003/67~16!/165210~20!/$20.00 67 1652
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k5kz , u~k!5]v~k!/]k, ~2!

and suppose that one of the spectral branchesv(k) has a
stationary inflection point atk5k0 , v5v0,

]v

]k U
k5k0

50;
]2v

]k2 U
k5k0

50;
]3v

]k3U
k5k0

Þ0, ~3!

as shown in Fig. 1. Note that there are two propagating~ex-
tended! Bloch waves with frequencyv5v0: one with k
5k0, and the other withk5k1. Obviously, only one of the
two waves can transfer electromagnetic energy—the
with k5k1 and the group velocityu(k1),0. The Bloch
eigenmode withk5k0 has zero group velocityu(k0)50 and
does not transfer energy. This latter eigenmode associ
with stationary inflection point~3! is referred to as thefrozen
mode. As one can see in Fig. 1, none of the eigenmodes w
v5v0 has positive group velocity and therefore none of t
electromagnetic eigenmodes can transfer the energy from
to right at this particular frequency! Thus a photonic crys
with the dispersion relation similar to that in Fig. 1 displa
the property ofelectromagnetic unidirectionalityat v5v0.
Such a remarkable effect can be viewed as an extreme m
festation of the spectral asymmetry~1!.

According to Ref. 10, the effect of unidirectionality ca
occur in magnetic photonic crystals made up of comm
dielectric and ferro- or ferrimagnetic components~at least at
frequencies below 1012Hz). There are two key physical re
quirements for that:

~i! The space arrangement of the constitutive compone
must satisfy certain symmetry criterion for spectral asymm
try. This criterion, specified in Ref. 10, rules out all nonma
netic and the majority of magnetic photonic crystals. T
space arrangement of magnetic and other constitutive c
ponents must be complex enough to allow for the bulk sp
tral asymmetry~1!.

~ii ! The magnetic constituent~for instance, ferrite! must
display significant circular birefringence at frequency ran
of interest, for example, several percent or more. Failure
©2003 The American Physical Society10-1
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A. FIGOTIN AND I. VITEBSKIY PHYSICAL REVIEW B 67, 165210 ~2003!
FIG. 1. An example of asym-
metric bulk electromagnetic dis
persion relation of a periodic mag
netic stack. Atv5v0 , k5k0, one
of the spectral branches develop
a stationary inflection point~3! as-
sociated with the frozen mode.vb

is the edge of the lowest fre
quency band. The graphs~a! and
~b! represent two different choice
of the Brillouin zone. The values
v andk are expressed in units o
c/L and 1/L, respectively.
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satisfy this condition does not formally rule out the pheno
enon of unidirectionality, but it makes the magnitude of t
effect insignificant. Indeed, weak Faraday rotation leads
small value of the third derivative (]3v/]k3)k5k0

in Eq. ~3!,

which, in turn, pushes the stationary inflection pointv0 in
Fig. 1 too close to the photonic band edgevb .

The simplest and, perhaps, the most practical perio
structures displaying the property of unidirectionality a
one-dimensional~1D! periodic magnetic stacks, an examp
of which is presented in Fig. 2. If the above two conditio

FIG. 2. A simplest periodic magnetic stack supporting asymm
ric bulk dispersion relation. Each primitive cellL52A1F com-
prises three layers: two anisotropic dielectric layers 1 and 2
thicknessA and with misaligned in-plain anisotropy, and one ma
netic layer of thicknessF and magnetization shown by the arrow
The misalignment angle between adjacent layers 1 and 2 mus
different from 0 andp/2.
16521
-

a

ic

are met, one can always achieve electromagnetic unidi
tionality at a given frequencyv0 by adjusting at least two
different physical and/or geometrical parameters, such a

• the ratior5F/A of the layers thicknesses,
• the misalignment anglew5w12w2 between anisotropic

dielectric layers,
• magnetic permeability and/or electric permittivity of th

layers~this can be done by application of external homog
neous magnetic or electric field19,20!.

Physical manifestations of the electromagnetic unidir
tionality prove to be rather universal and dependent solely
the dispersion relationv(kW ) in the vicinity of the frozen
mode frequencyv0. An essential characteristic determinin
the magnitude of the respective electromagnetic abnorm
ties is the dimensionless parameter

f5
1

v0L3 S ]3v

]k3 D
k5k0

, ~4!

whereL is the length of the primitive cell of the photoni
crystal. For instance, periodic stacks made of different c
stitutive materials and having completely different geome
display, nevertheless, very similar behavior in the vicinity
the frozen mode frequency, provided that they have com
rable values of the parameterf from Eq.~4!. For this reason,
all numerical examples considered in this paper are base
a single magnetic periodic stack shown in Fig. 2 and
scribed in detail in Appendix A. These examples illustrate
universal features of electromagnetic behavior of all uni
rectional photonic crystals.
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ELECTROMAGNETIC UNIDIRECTIONALITY IN . . . PHYSICAL REVIEW B67, 165210 ~2003!
FIG. 3. Asymmetric dispersion
relations of the periodic structure
slightly modified compared to tha
related to Fig. 1. In both cases, th
stationary inflection point of Fig.
1 evolves into a simple inflection
point with vkk9 (k)Þ0: ~a! the ra-
tio r5F/A of the layers thick-
nesses exceeds the the critic
valuer0 by a third;~b! r,r0 by a
third. Here r0 is the ‘‘unidirec-
tional’’ ratio corresponding to the
situation in Fig. 1.
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If any of the physical or geometrical parameters of a u
directional stack is altered, the stationary inflection point~3!
can turn into a regular inflection point corresponding to
finite group velocity, as shown in Fig. 3~a!, or a pair of close
inflection points, as in the situation in Fig. 3~b!. This blurs
and weakens the effects associated with electromagnetic
directionality.

At first sight, the existence of the frozen mode related t
stationary inflection point~3! does not require the spectr
asymmetry~1!. Indeed, a hypothetical symmetric dispersi
relation in Fig. 4~a! would have a pair of stationary inflectio
points, although there would be no spectral asymmetry,
alone unidirectionality, in such a case. But in fact, the sit
tion similar to that in Fig. 4~a! cannot occur regardless of th
complexity of the composite structure. At any given fr
quency, there cannot be more than one stationary inflec
point ~3! in the electromagnetic spectrum. Thereforethe fro-
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zen mode cannot exist in periodic stacks, either magneti

nonmagnetic, with symmetric dispersion relationsv(kW )

5v(2kW ).
On the other hand, whenever the electromagnetic dis

sion relation has a stationary inflection point~3! ~i.e., the
frozen mode!, it always displays the property of unidirection
ality at the same frequency. This implies that a hypotheti
dispersion relation in Fig. 4~b! having a stationary inflection
point atv5v0 but not displaying electromagnetic unidire
tionality at the respective frequency, cannot occur either.
call that the unidirectionality means the existence of pro
gating modes with only negative~or only positive! group
velocity at a given frequency and given direction of prop
gation.

The above statements suggest a strict one-to-one co
spondence between the existence of the frozen mode an
property of unidirectionality at the same frequency in pe
,
d-

t

FIG. 4. Hypothetical dispersion relations
which cannot exist in any periodic stack regar
less of its complexity:~a! symmetric dispersion
relation with two stationary inflection points a
the same frequencyv0; ~b! asymmetric disper-
sion relation with stationary inflection point~the
frozen mode! at v5v0, but without the property
of unidirectionality at the same frequency.
0-3
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A. FIGOTIN AND I. VITEBSKIY PHYSICAL REVIEW B 67, 165210 ~2003!
odic layered media. This is a consequence of the fact tha
dispersion relationv(k) of a periodic stack is determined b
characteristic equation of the fourth degree. Indeed, a
given frequencyv, there must be a total of four real an
complex solutions for the wave vectorkW iz. Taking into con-
sideration that a stationary inflection point~3! is always as-
sociated with a triple real root of the characteristic equati
one can come to the following conclusions:

~i! There cannot be more than one frozen mode at
same frequencyv0. For instance, the dispersion relation
Fig. 4~a! showing a couple of inflection points at the sam
frequency cannot occur.

~ii ! There must be one and only one additional eigenm
at the frequencyv0 of the frozen mode with the wave vecto
k different from k0. For instance, the dispersion relation
Fig. 4~b! showing three additional eigenmodes at the f
quency of the frozen mode, cannot occur either.

Detailed consideration of the bulk electromagnetic spe
in infinite periodic gyrotropic stacks is presented in Sec.
where we thoroughly analyze a peculiar behavior of the
tended and evanescent modes in nonreciprocal peri
stacks. Emphasis is given to the vicinity of stationary infle
tion point where the phenomenon of unidirectionality occu
Importantly, if the frequencyv exactly coincides withv0
from Eq. ~3!, the electromagnetic field inside the unidire
tional periodic array does not reduce to a linear superposi
of canonical Bloch eigenmodes. The latter peculiarity is
lated to the triple degeneracy of the stationary inflect
point. The results of Sec. II are further applied to sem
infinite and finite unidirectional slabs.

B. Electromagnetic properties
of a semi-infinite unidirectional slab

The phenomenon of unidirectionality is associated w
unique electromagnetic properties of periodic media in
vicinity of the frozen mode frequencyv0. Some preliminary
conclusions can be drawn from the energy conservation c
sideration. Consider a plane electromagnetic wave imping
on the surface of a semi-infinite unidirectional photonic cr
tal, as shown in Fig. 5. The directionz of wave propagation
is perpendicular to the photonic slab boundary and coinc

FIG. 5. Forward~left-to-right! normal incidence on the surfac
of a semi-infinite unidirectional slab with the dispersion relation
Fig. 1; the frequencyv lies within the rangeva,v,vb . C I(z)
andCR(z) are the incident and reflected waves in vacuum;Cex(z)
andCev(z) are the extended~with u.0) and the evanescent~with
Im k.0) contributions to the transmitted waveCT(z).
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with thez axis in Eqs.~2! and~3!. Due to the spectral asym
metry of the slab, the situation of the reversed inciden
presented in Fig. 6 appears to be quite different and will
considered later on.

Let SI.0, SR<0 andST >0 be the energy flux of the
incident (C I), reflected (CR) and transmitted (CT) waves,
respectively. The energy conservation yields

SI1SR5ST ~5!

or, equivalently

ST5tSI , SR52rSI , r512t, ~6!

wheret andr are the normal transmittance and reflectan
of the semi-infinite slab, respectively (0<t<1,0<r<1).
Assume that the wave frequencyv lies within the frequency
range

va,v,vb ~7!

in Fig. 1. In such a case, the transmitted waveCT(z) inside
the slab is a superposition of one extended~propagating!
Bloch eigenmodeCex(z) ~the one withu.0) and one eva-
nescent modeCev(z) ~the one with Imk.0), as shown in
Fig. 5. Evanescent eigenmodes, which are not shown in
dispersion relation in Fig. 1, do not contribute to the ene
flux, therefore the extended eigenmodeCex(z) is the only
one contributing to the energy fluxST transmitted inside the
slab. In the case of a single propagating mode, the ene
flux ST can be expressed in terms of the mode energy den
Wex and its group velocityu from Eq. ~2!

ST5uWex . ~8!

The fact that the group velocityu vanishes asv→v0, im-
plies two possible scenarios, depending on whether the
ergy flux ST inside the slab also vanishes asv→v0.

The most obvious scenario would be

ST→0,t→0, asv→v0 , ~9!

which implies a total reflectance of the incident wave atv
5v0. Such a behavior would be similar to what common
occurs in any semi-infinite photonic slab in the vicinity of

FIG. 6. Backward~right-to-left! normal incidence on the surfac
of a semi-infinite unidirectional slab with the dispersion relation
Fig. 1; the frequencyv lies within the rangeva,v,vb . C I(z)
andCR(z) are the incident and reflected waves in vacuum;CEX(z)
andCEV(z) are the extended~with u,0) and the evanescent~with
Im k,0) contributions to the transmitted waveCT(z).
0-4
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ELECTROMAGNETIC UNIDIRECTIONALITY IN . . . PHYSICAL REVIEW B67, 165210 ~2003!
FIG. 7. Transmittancete of
semi-infinite unidirectional slab vs
frequencyv ~in units of c/L) for
the case of forward incidence
shown in Fig. 5. The characteristi
frequencies are explained in Fig
1. The incident wave polarization

is: ~a! linear, withEW ix; ~b! linear,

with EW iy; ~c! elliptic, correspond-
ing to maximal transmittance a
v5v0; ~d! elliptic, that produces
a single extended modeCex(z)
inside the slab ~no evanescent
mode contribution!.
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photonic band edge, where the group velocity of the
tended eigenmode also vanishes. Specifically, referring to
example in Fig. 1, we have in the vicinity of the photon
band edge atv5vb

ST→0, t→0, as v→vb ~10!

as illustrated in Fig. 7. This common situation occurs in a
semi-infinite photonic crystal near photonic band edges.

By contrast, it turns out that in the vicinity of the froze
mode frequencyv0 we have, instead of Eq.~9!,

ST→S0.0, t→t0.0, WT→`, as v→v0 . ~11!

In such a case, the incident waveC I with the frequencyv
close tov0 can enter the semi-infinite unidirectional sla
with little or even no reflectance@see Figs. 7~a!,~c! where the
transmittancet remains finite in the vicinity ofv0]. Having
entered the slab, the incident wave converts into nearly
zen extended modeCex(z) and slows down dramatically
Immediately upon entering the slab, the wave amplitu
uCT(z)u2 is limited, as shown in Fig. 8~a!, but then it gradu-
16521
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ally increases until reaches its saturation value

uCex~z!u2;uv2v0u22/3. ~12!

The distancel from the slab boundary, at which the wav
intensity approaches its maximum value~12!, is also strongly
dependent onuv2v0u,

l;US ]3v

]k3 D
k5k0

~v2v0!21U1/3

. ~13!

Relatively small amplitude of the electromagnetic fie
CT(z) in the transient regionz! l is due to a destructive
interference of the nearly frozen modeCex(z) and the eva-
nescent modeCev(z) with Rek.0. As illustrated in Figs. 8
and 9~a! and ~b!, both contributions have huge and near
equal and opposite values near the slab boundary, so
their superpositionCT(0)5FT5Fex1Fev at z50 is rela-
tively small, as shown in Fig. 9~c!. The destructive interfer-
ence allows to satisfy the boundary condition~81! at the
semi-infinite slab boundary. Atz@ l the contribution of the
-

r-

l

FIG. 8. Amplitude of the re-
sulting electromagnetic field
CT(z) and its extended and eva
nescent componentsCex(z) and
Cev(z) inside unidirectional slab.
z is the distance from the slab su
face in units ofL. Frequencyv is
close to v0 ~specifically, v2v0

50.05v0). The amplitudeuC I u2

of the incident radiation is equa
to unity.
0-5
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FIG. 9. Destructive interfer-
ence of the extended and the ev
nescent components of electro
magnetic fieldFT5CT(0) at the
surface of semi-infinite unidirec-
tional slab for the case of forward
incidence: ~a! extended ~nearly
frozen! contribution uFexu2

5uCex(0)u2 for EW iy; ~b! evanes-
cent contribution uFexu2

5uCex(0)u2 for EW iy; ~c! the re-
sulting field amplitude uFTu2

5uFex1Fevu2 for EW iy; ~d! the

resulting field amplitude forEW ix.
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evanescent modeCev(z) decays exponentially, while th
contribution of the extended modeCex(z) remains constan
and huge. As a result, the total electromagnetic field am
tudeCT(z) inside the slab gradually increases with the d
tancez until reaches its maximum value ofCex(z) from Eq.
~12!, as illustrated in Fig. 8~a!. If the frequencyv exactly
coincides withv0, the transmitted waveCT(z) inside the
unidirectional slab is not a superposition of canonical Blo
eigenmodes, and its amplitude inside the slab diverges

at v5v0 : uCT~z!u2;z2, as z→` ~14!

as shown in Fig. 10.
The phenomenon described by formulas~12! and~14! and

illustrated in Figs. 8 and 10 can be viewed asunidirectional
freezing of the incident electromagnetic wave inside t
semi-infinite unidirectional slab. It is accompanied by a d
matic slowdown of the transmitted wave inside the slab,
well as a huge increase in its amplitude.Remarkably, the
transmittancete of the semi-infinite slab remains finite an
can be even close to 100%. By contrast, in the situation whe
the plane electromagnetic wave of the same frequencv
close or equal tov0 impinges on the surface of the sam
unidirectional stack but from the opposite direction,
shown in Fig. 6, nothing extraordinary occurs. The incide
wave gets partially reflected, and the rest continues inside
slab in the form of the extended Bloch eigenmodeCEX(z)
with finite group velocity u(k1),0 and finite amplitude
uCEX(z)u25uFEXu2, as illustrated in Fig. 11. Such an ex
treme asymmetry between the cases of forward and b
ward incidence justifies the termunidirectional freezingfor
what happens in a semi-infinite unidirectional slab.
16521
i-
-

h

-
s

s
t
he

k-

The effect of unidirectional freezing proves to be rath
robust when some physical or geometrical parameters of
original unidirectional array are slightly altered. For instan
when the relative thicknessr5F/A of the layers in the pe-
riodic structure in Fig. 2 is increased or decreased by a th
@the respective modified dispersion relations are presente

FIG. 10. Amplitude uCT(z)u2 of electromagnetic field inside
unidirectional slab vs the distancez ~in units of L) from the slab
surface; the frequencyv coincides with the frozen mode frequenc

v0. Polarization of the forward incident wave is linear, withEW uux
@compare with Fig. 8~a!#.
0-6
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FIG. 11. The amplitude of
electromagnetic fieldFT and its
extended (FEX) and evanescen
(FEV) components at the surfac
of semi-infinite unidirectional slab
in Fig. 6 for the case ofbackward
incidence:~a! extended contribu-

tion uFEXu2 for EW iy; ~b! evanes-

cent contributionuFEVu2 for EW iy;
~c! the resulting field amplitude

uFTu25uFEX1FEVu2 for EW iy; ~d!
the resulting field amplitudeuFTu2

for EW ix.
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Figs. 3~a! and ~b!, respectively#, the frozen mode blurs, bu
the surge in electromagnetic field amplitude inside the s
remains quite significant—more than an order of magnitu

In Sec. IV, we consider the transmittance of a finite gy
tropic photonic slab, which is a finite fragment of a unidire
tional photonic crystal. As long as the number of layers c
stituting a finite slab is small, the electromagnetic proper
of the slab does not show any indication of the unidirectio
ality of the respective infinite or semi-infinite periodic stack
But when the numberN of the elementary fragmentsL in
Fig. 2 is large, the finite slab does show some distinct beh
ior in the vicinity of the frozen mode frequencyv0. For
instance, the dependence of the slab transmittance on
polarization of the incident radiation is similar to that of th
semi-infinite slab. In Figs. 12~a! and~b! one can see that fo
certain elliptical polarization of the forward incident radi
tion, the thick unidirectional slab becomes virtually transp
ent in the vicinity of the frozen mode frequencyv0. This
particular polarization coincides with that shown in Fig. 7~c!
and provides the maximal forward transmittancete of the
respective semi-infinite slab. In addition to this, both t
thick finite slab and the respective unidirectional sem
infinite stack become totally reflective in the vicinity ofv0,
if the polarization of the incident wave is orthogonal to t
previous one, as shown in Figs. 7~d! and 12~b!, respectively.

II. TRANSVERSE ELECTROMAGNETIC WAVES
IN PERIODIC GYROTROPIC MEDIA:

ELECTROMAGNETIC UNIDIRECTIONALITY.

This section starts with a brief discussion of bulk elect
magnetic properties of gyrotropic periodic layered structur
16521
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We consider the basic features of extended and evanes
eigenmodes characteristic of nonreciprocal periodic arra
Particular attention is given to the effect of unidirectionali
The results of this section are used in the following study
the electromagnetic properties of unidirectional slabs.

A. Definitions and notations

Electromagnetic properties of gyrotropic layered me
have been a subject of numerous publications~see, for ex-
ample Refs. 10–16, and references therein!. Our objective
here is to introduce those concepts, definitions, and n
tions, which are necessary for understanding the electrom
netic properties of unidirectional photonic crystals. We co
sider the simplest and the most important case of laye
dielectric media, which supports transverse electromagn
waves with alternating field components

EW ~z!, HW ~z!, DW ~z!, BW ~z!'zW. ~15!

The directionz of wave propagation is normal to the layer
as shown in Fig. 5. In such a case, the time harmonic M
well equations

“3EW ~rW !5
iv

c
BW ~rW !, “3HW ~rW !52

iv

c
DW ~rW ! ~16!

can be recast as

ŝ
]

]z
EW ~z!5

iv

c
BW ~z!, ŝ

]

]z
HW ~z!52

iv

c
DW ~z!, ~17!
0-7
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FIG. 12. Forward transmit-
tance of a thick unidirectional slab
with N532 in the vicinity of the
frozen mode frequencyv0. The
elliptical polarization of the inci-
dent wave is:~a! the same as in
Fig. 7~c!, that provides the maxi-
mal transmittance;~b! the same as
in Fig. 7~d!, that provides total re-
flectance in both cases. Small de
viation of the extreme points from
v5v0 is due to a finite thickness
of the slab.
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where, in accordance with Eq.~15!, all the fields are two-
dimensional vectors lying in thex-y plane and

ŝ5F0 21

1 0 G .
The transverse alternating electric and magnetic fieldsEW (z)
andHW (z) in Eq. ~17! are related to the electric and magne
inductions DW (z) and BW (z) by common linear constitutive
relations

DW ~z!5 «̂~z!EW ~z!, BW ~z!5m̂~z!HW ~z!. ~18!

The Hermitian anisotropic tensors

«̂~z!5F«xx~z! «xy~z!

«xy* ~z! «yy~z!
G , m̂~z!5Fmxx~z! mxy~z!

mxy* ~z! myy~z!
G
~19!

are frequency dependent and take different values in dif
ent layers of the stack. The substitution of Eq.~18! into Eq.
~17! gives

ŝ
]

]z
EW ~z!5

iv

c
m̂~z!HW ~z!; ŝ

]

]z
HW ~z!52

iv

c
«̂~z!EW ~z!.

~20!

The fieldsEW (z) andHW (z) are continuous functions ofz, even
if «̂(z) and m̂(z) along withDW (z) andBW (z) are not.

The reduced Maxwell equations~20! can also be recast in
a compact form,
16521
r-

M̂ ~z!C~z!5vC~z!, ~21!

where

C~z!5F Ex~z!

Ey~z!

Hx~z!

Hy~z!

G ,

~22!

M̂ ~z!5
c

i F 0 m̂21~z!ŝ

2 «̂21~z!ŝ 0
G ]

]z
.

The transfer matrix of a layered structure

The transfer-matrix formalism is particularly useful
electrodynamics of layered media composed of anisotro
and/or gyrotropic layers. Below we introduce the basic de
nitions and notations, consistent with those of Ref. 10. M
information on the subject can be found in Refs. 13–16, a
references therein.

The reduced time-harmonic Maxwell equations~21! con-
stitute a system of four ordinary linear differential equatio
of the first order. Its general solution is a linear superposit
of four eigenmodes,

C~z!5C1C1~z!1C2C2~z!1C3C3~z!1C4C4~z!.
~23!

The four coefficientsCi in Eq. ~23! can be uniquely
related to the four transverse field components~22! at a
given pointz,
0-8
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C~z!5Ŵ~z!F C1

C2

C3

C4

G , ~24!

whereŴ(z) is a nonsingular 434 matrix

Ŵ~z!5@C1~z! C2~z! C3~z! C4~z!# ~25!

composed of the column vectorsC i(z) from Eq. ~23!. The
equality ~24! yields a one-to-one correspondence betwe
the electromagnetic field componentsC(z) at any two dif-
ferent locationsz1 andz2,

C~z2!5T̂~z2 ,z1!C~z1!, ~26!

where the 434 matrix

T̂~z2 ,z1!5Ŵ~z2!Ŵ21~z1! ~27!

is referred to as the transfer matrix.26

In homogeneous media, the transfer matrix~26! has trans-
lation symmetry

T̂~z22z1!5T̂~z2 ,z1!, ~28!

whereT̂(z)5T̂21(2z). In addition, in homogeneous mate
rials without linear magnetoelectric effect, the matrixT̂(z)
and T̂21(z) are similar,

T̂~z!5UT̂21~z!U21, ~29!

implying that

detT̂~z!51. ~30!

We also introduce the transfer matrix of themth homoge-
neous layerT̂m5T̂(zm), wherezm is the layer thickness. The
single-layer transfer matrixT̂m depends on the layer thick
nesszm and material tensors«̂m and m̂m . The explicit ex-
pressions for theT̂ matrices of anisotropic and gyrotrop
layers are rather cumbersome, and those we use are
sented in Appendix A.

The T matrix of a stack of layers is the product of th
matricesTm constituting the stack

T̂S5)
m

T̂m . ~31!

Equations~30! and ~31! imply that

detT̂S51 ~32!

for an arbitrary stack. At the same time, the similarity re
tion

T̂S5UT̂S
21U21, ~33!

analogous to Eq.~29!, may not hold for some gyrotropic
stacks composed of three or more layers. This is dire
16521
n

re-

-

ly

related to the phenomenon of spectral asymmetry~1!. For an
extended discussion see the next subsection.

B. Extended and evanescent modes
in nonreciprocal periodic stacks

1. Characteristic equation

Bloch solutions for the Maxwell equations~20! in a peri-
odic medium satisfy

Ck~z1L !5eikLCk~z!, ~34!

where L is the length of the primitive cell of the periodi
stack,k is the Bloch wave vector~2!, andCk(z) is the re-
spective column vector~22!. The quasimomentumk is de-
fined uniquely up to a multiple of 2p/L.

It follows from the definition~26! of the T matrix that

Ck~z1L !5T̂~z1L,z!Ck~z!. ~35!

Comparing Eqs.~35! and ~34! we get atz50

T̂LFk5eikLFk , ~36!

whereT̂L5T̂(L,0) is theT matrix of the primitive cell of the
periodic stack, whileFk5Ck(0) is one of the four Bloch
solutionsCk(z) for the reduced Maxwell equations~20! at
z50.

Equation ~36! implies that the Bloch eigenvectorsFk

uniquely relate to those of the transfer matrixT̂L . The re-
spective four eigenvalues

z i5eikiL, i 51,2,3,4 ~37!

of T̂L are the roots of the characteristic equation

det~ T̂L2z Î ![F~z!5z41P3z31P2z21P1z1150,
~38!

where, according to Ref. 10,

P15P3* , P25P2* . ~39!

Introducing the real coefficients

R5ReP1 , P5Im P1 , ~40!

we recast Eq.~38! as

F~z!5z41~R2 iP !z31P2z21~R1 iP !z1150 ~41!

or, in the more symmetrical form,

M ~z!5z22F~z!5z21~R2 iP !z1P21~R1 iP !z211z22

50. ~42!

Plugging

z5cos~kL!1 i sin~kL!

in Eq. ~42! yields yet another form of the characteristic equ
tion
0-9
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M ~k!5221P212R cos~kL!12P sin~kL!14 cos2~kL!

50, ~43!

where all the coefficients are now real.

2. Extended and evanescent solutions

The coefficients of the characteristic equation are
pressed in terms of the elements of the matrixT̂L . Those
elements are functions of the physical parameters of the
stitutive layers and the frequencyv. For any given fre-
quencyv, the characteristic equation defines a set of fo
values$z1 ,z2 ,z3 ,z4%, or equivalently,$k1 ,k2 ,k3 ,k4%. Real
k ~roots withuzu51) correspond to propagating Bloch wav
~extended modes!, while complexk ~roots with uzuÞ1) cor-
respond to evanescent modes. Evanescent modes are re
near photonic crystal boundaries and other structural irre
larities.

The characteristic equation~42! implies that for any given
frequencyv,

if z is a root, then 1/z* is also a root ~44!

or, equivalently,

if k is a solution, thenk* is also a solution. ~45!

In view of the statement~44!, one has to consider three di
ferent situations. The first possibility,

uz1u5uz2u5uz3u5uz4u51, ~46!

or, equivalently,

k1[k1* , k2[k2* , k3[k3* , k4[k4* ,

relates to the case of all four Bloch eigenmodes being
tended~see, for instance, the frequency range

0,v,va ~47!

in Fig. 1!.
The second possibility,

uz1u5uz2u51; z451/z3* ; where uz3u,uz4uÞ1, ~48!

or, equivalently

k15k1* , k25k2* , k35k4* , where k3Þk3* , k4Þk4* ,

relates to the case of two extended and two evanes
modes~the frequency range

va,v,vb ~49!

in Fig. 1!.
The last possibility,

z251/z1* ; z451/z3* ; where uz1u,uz2u,uz3u,uz4uÞ1,
~50!

or, equivalently,

k15k2* , k35k4* , where k1Þk1* , k2Þk2* , k3Þk3* ,k4

Þk4* ,
16521
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relates to the case of a frequency gap, when all four Blo
eigenmodes are evanescent~the frequency range

vb,v ~51!

in Fig. 1!.
Equation~32! implies that in all cases

z1z2z3z451 ~52!

or, equivalently

k11k21k31k4[0. ~53!

C. Spectral symmetry vs spectral asymmetry

If all the coefficients in the characteristic equation~38!
are real@that amounts toP50 in Eq. ~40!#, then for a given
frequencyv

$z1 ,z2 ,z3 ,z4%5$z1* ,z2* ,z3* ,z4* %, ~54!

or, in terms of the Bloch wave vectors

if P50, then $k1 ,k2 ,k3 ,k4%5$2k1* ,2k2* ,2k3* ,2k4* %.
~55!

Observe that the relation~54! together with Eq.~44! ensure
similarity of the matrixT̂L and T̂L

21 ,

if P50, then T̂L5UT̂L
21U21.

Conversely

if PÞ0, then T̂LÞUT̂L
21U21 for anyU.

In terms of the dispersion relationv(k), the relation~55!
together with Eq.~45! imply the spectral reciprocity~spec-
tral symmetry! of the Bloch eigenmodes,

if P50 then

$v~k1!,v~k2!,v~k3!,v~k4!%

5$v~2k1!,v~2k2!,v~2k3!,v~2k4!%. ~56!

In view of the symmetry consideration of Ref. 10, the re
tion ~56! holds for all nonmagnetic and for the majority o
magnetic photonic crystals.

The appearance of complex coefficientsPi in Eq. ~38!
@that amounts toPÞ0 in Eq. ~40!# leads to violation of the
relation ~55! for a given frequencyv,

if PÞ0 then $k1 ,k2 ,k3 ,k4%Þ$2k1* ,2k2* ,2k3* ,2k4* %,
~57!

which in terms of the dispersion relationv(k) implies the
spectral asymmetry

if PÞ0 then $v~k1!,v~k2!,v~k3!,v~k4!%Þ$v

~2k1!,v~2k2!,v~2k3!,v~2k4!%. ~58!
0-10
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A simplified definition of the spectral asymmetry is given
Eq. ~1!, wherek is presumed real.

Regardless of the spectral symmetry or asymmetry,
evanescent modes~those withkÞk* ), if then exist, must
comply with the relation

$v~k1!, . . . %[$v~k1* !, . . . % ~59!

following from Eq. ~44!.
A specific numerical example of asymmetric electroma

netic spectrum is shown in Fig. 1. The physical parameter
the corresponding periodic stack are chosen so that at a
tain frequencyv0 the dispersion relationv(k) of one of the
spectral branches develops a stationary inflection point.
corresponding frequency is associated with the electrom
netic unidirectionality. In the next subsection, we take
closer look at this particular situation.

D. Stationary inflection point

The dispersion relationv(k) of an arbitrary periodic stack
is determined by the characteristic equation~41!, where the
coefficientsR, Q, and P are functions of the frequencyv.
Using the characteristic equation~41!, we can define the sta
tionary inflection pointz05exp(ik0L) in Eq. ~3! as one sat-
isfying

F~z0!50, Fz8~z0!50, Fzz9 ~z0!50 ~60!

with an additional condition

Fzzz- ~z0!Þ0. ~61!

Equations~60! impose certain relations upon the valuesR0 ,
Q0, and P0 of the frequency dependent coefficientsR, Q ,
t

ly

16521
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andP at v5v0. Those relations requirez0 to be a triple root
of the characteristic polynomialF(z) at v5v0, i.e.,

F0~z!5z41~R02 iP0!z31Q0z21~R01 iP0!z11

5~z2z1!~z2z0!350. ~62!

In view of Eqs. ~52! and ~44!, the valuesz0 and z1 are
related by

z15z0
23 , uz0u5uz1u51 ~63!

or, equivalently,

k1[23k0 , Im k05Im k150. ~64!

A small deviation of the frequencyv from its special
valuev0 changes the coefficientsR0 , Q0, andP0 in Eq. ~62!
and removes the triple degeneracy of the solutionz0. Taking
into account Eqs.~60! and ~61!, we have

z2z0'2~6!1/3S ]F/]v

]3F/]z3D
z5z0 ,v5v0

1/3

~v2v0!1/3j,

wherej51,e2p i /3,e22p i /3, ~65!

or, in terms of the quasimomentumk,

k2k0'S 1

6
v-~k0! D 21/3

~v2v0!1/3j,

where j51,ei (2p/3),e2 i (2p/3).
~66!

We can also rearrange Eq.~66! in a different form, which is
actually used for further references,
5
kex'k0161/3@v-~k0!#21/3~v2v0!1/3,

kev'k01
1

2
~6!1/3@v-~k0!#21/3~v2v0!1/31 i

A3

2
61/3@v-~k0!#21/3uv2v0u1/3,

kEV'k01
1

2
~6!1/3@v-~k0!#21/3~v2v0!1/32 i

A3

2
61/3@v-~k0!#21/3uv2v0u1/3.

~67!
The real quasimomentumkex in Eq. ~67! relates to the ex-
tended modeCex(z), which turns into the frozen mode a
v5v0. The other two solutions,kev and kEV5kev* , corre-
spond to a pair of evanescent modes,Cev(z) and CEV(z),
with positive and negative imaginary parts, respective
Those modes are truly evanescent~i.e., have ImkÞ0) only
if vÞv0. But it does not mean that atv5v0, the eigen-
modesCev(z) andCEV(z) become extended!
.

Eigenmodes at frequencyv0 of stationary inflection point

Consider four eigenvectors,

Fk1
5Ck1

~0!, Fk2
5Ck2

~0!,

Fk3
5Ck3

~0!, Fk4
5Ck4

~0!, ~68!
0-11
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of the transfer matrixTL from Eq. ~36! in the vicinity of
stationary inflection point. As long asvÞv0, four eigenvec-
tors ~68! comprise two extended and two evanescent Blo
solutions. One of the extended modes~say,Fk1

) corresponds

to the nondegenerate real rootz15eik1L of the characteristic
equation with the negative group velocityu(k1)5v8(k1)
,0, as shown in Fig. 1. This solution, relating to the bac
ward propagating mode, is of no interest for us. The ot
three eigenvectors ofTL correspond to three nearly degene
ate roots~65!. As v approachesv0, those three eigenvector
not only become degenerate, but they also become colin

Fk2
→a2,4Fk4

, Fk3
→a3,4Fk4

as v→v0 , ~69!

wherea2,4 anda3,4 are complex scalars. The latter importa
feature relates to the fact that atv5v0, the matrixTL(v0)
has a nontrivial Jordan canonical form,

TL~v0!5UF z1 0 0 0

0 z0 1 0

0 0 z0 1

0 0 0 z0

GU21, ~70!

and therefore cannot be diagonalized~see, for example, Ref
17!. It is shown rigorously in Appendix B, that the very fa
that the TL eigenvalues display the singularity~65! at v
5v0 implies that the matrixTL(v0) has the canonical form
~70!. One of the consequences of Eq.~70! is that the matrix
TL(v0) has only two~not four!! eigenvectors:

~1! Fk1
, corresponding to the nondegenerate rootz1, and

~2! Fk0
, corresponding to the triple rootz0 and describing

the frozen mode.
The other two solutions of the Maxwell equation~21! at

v5v0 are general Floquet eigenmodes which do not red
to the canonical Bloch form. Yet, they can be related to
frozen modeCk0

(z). Indeed, following the standard proce
dure~see, for example, Ref. 18!, consider an extended Bloc
solution

Ck~z!5ck~z!eikz, where ck~z1L !5ck~L !, Im k50
~71!

of the reduced Maxwell equation~21!. By definition

M̂Ck~z!5v~k!Ck~z!. ~72!

Assume that the dispersion relationv(k) in Eq. ~72! has a
stationary inflection point~3! at k5k0. Differentiating Eq.
~72! with respect tok gives, in view of Eq.~3!,

at k5k0 : M̂
]

]k
Ck~z!5v~k!

]

]k
Ck~z!; M̂

]2

]k2
Ck~z!

5v~k!
]2

]k2
Ck~z!.

This implies that atk5k0, both functions
16521
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]

]k
Ck~z!5eikz

]

]k
ck~z!1 izck~z!eikz ~73!

and

]2

]k2
Ck~z!5eikz

]2

]k2
ck~z!1 izeikz

]

]k
ck~z!2z2ck~z!eikz

~74!

are also eigenmodes ofM̂ with the same eigenvaluev0.
Therefore all three solutions~71!, ~73!, and ~74! are eigen-
modes ofM̂ with the same eigenvaluev0 . For further ref-
erences we recast those three eigenmodes in the follow
form:

Ck0
~z!,

C0,1~z!5Ċk0
~z!1 izCk0

~z!, ~75!

C0,2~z!5C̈k0
~z!1 izĊk0

~z!2z2Ck0
~z!,

where

Ċk0
~z!5S ]

]k
ck~z! D

k5k0

eik0z and C̈k0
~z!

5S ]2

]k2
ck~z!D

k5k0

eik0z

are auxiliary Bloch functions~not eigenmodes!. Observe that
only the first of the three solutions~75! is a canonical Bloch
eigenmode@the frozen modeCk0

(z)]. The other two solu-
tions diverge as the first and the second power ofz, respec-
tively. They are referred to as general Floquet modes.

Deviation of the frequencyv from v0 removes the triple
degeneracy~70! of the matrixTL , as can be seen from Eq
~65!. The modified matrixTL can now be reduced to a diag
onal form with the set~68! of four eigenvectors comprising
two extended and two evanescent Bloch solutions.

III. SEMI-INFINITE UNIDIRECTIONAL STACK

A. Transmittance and reflectance of a semi-infinite stack

Consider plane electromagnetic waveC I(z) impinging
normally on the surface of a unidirectional semi-infinite sla
as shown in Fig. 5. In vacuum~at z,0), the electromagnetic
field CL(z) is a superposition of the incident and reflect
waves

atz,0: CL~z!5C I~z!1CR~z! ~76!

where

C I~z!5F IexpS iv

c
zD , CR~z!5FRexpS 2

iv

c
zD ,

~77!
0-12
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ELECTROMAGNETIC UNIDIRECTIONALITY IN . . . PHYSICAL REVIEW B67, 165210 ~2003!
F I5C I~0!5F EI ,x

EI ,y

2EI ,y

EIx

G , FR5CR~0!5F ER,x

ER,y

ER,y

2ER,x

G ,

~78!

EW I and EW R are complex vectors describing two elliptical
polarized waves.

The transmitted waveCT(z) inside the stack is a supe
position of two Bloch eigenmodes,

atz.0: CT~z!5C1~z!1C2~z!. ~79!

The eigenmodesC1(z) and C2(z) can be both extended
one extended and one evanescent, or both evanescen
pending on which of the three cases~46!, ~48!, or ~50! we are
dealing with. In particular, if the frequencyv lies within the
rangeva,v,vb in Fig. 1, we have the situation~48!, and
the transmitted electromagnetic waveCT(z) is a superposi-
tion of the extended Bloch eigenmodeCex(z) with group
velocity u.0 and the evanescent modeCev(z) with Im k
.0,

atz.0: CT~z!5Cex~z!1Cev~z!. ~80!

The only exception to Eq.~80! is when the frequencyv
exactly coincides with the frequencyv0 of the frozen mode.
In such a case,CT(z) is a linear combination of the Floque
eigenmodes~75!, one of which is extended@the frozen mode
Ck0

(z)] and the other two cannot be expressed in canon

Bloch form ~34!. In what follows we assume thatv can be
arbitrarily close but not equal tov0, unless otherwise is ex
plicitly stated.

Extended and evanescent modes inside a periodic gyro
pic medium are defined by Eq.~36!. Knowing the Bloch
eigenmodes inside the slab and using the standard ele
magnetic boundary conditions

FT5F I1FR ~81!

at the slab surface atz50, one can express the amplitud
FT and FR of transmitted and reflected waves in terms
the amplitude and polarizationF I of the incident wave. This
gives us the transmittance and reflectance coefficients
semi-infinite slab, as well as the electromagnetic field dis
bution CT(z) inside the slab, as functions of the incide
wave polarization.

The transmittancete and reflectancer e of semi-infinite
slab are defined as

te5
S~FT!

S~F I !
, re52

S~FR!

S~F I !
; te1re51, ~82!

where

S~F!5
c

4p
^ExHy2EyHx&

is the energy density flux averaged over the period of os
lations.
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B. Overview of the results

A general idea of what happens when a plane electrom
netic wave of the frequencyv close to the frozen mode
frequencyv0 impinges on the surface of a semi-infinite un
directional slab, is provided by the numerical examp
shown in Figs. 7 and 8.

First, the transmittancete of the semi-infinite unidirec-
tional slab remains finite within the frequency rangeva,v
,vb , including the frequencyv0 of the frozen mode, as
seen in in Fig. 7. By contrast, the transmittancete of any
semi-infinite slab always vanishes in the vicinity of a ba
edge~see, for example, the vicinity ofv5vb in Fig. 7!. That
the incident wave with the frequencyv0 can freely enter a
semi-infinite unidirectional slab, in spite of the fact that t
wave group velocity inside the slab vanishes atv5v0, has
far-reaching implications.

Second, the field amplitude inside unidirectional slab c
rise by several orders of magnitude in the vicinity of t
frozen mode frequencyv0, as shown in Figs. 8~a! and 10.
This remarkable feature will be discussed in great detail la
in this section.

Third, in the vicinity ofv0, the density of mode has muc
stronger anomaly compared to that of the vicinity of a ba
edge frequency. This makes all the effects associated
the frozen mode much more robust.

Finally, the transmittance as well as the reflectance co
ficients develop a cusplike singularity atv5v0; the magni-
tude and the sign of this singularity being dependent on
polarization of the incident wave. In particular, if the incide
wave polarization is chosen so that only a single exten
modeCex(z) continues inside the slab@no evanescent con
tribution to CT(z)], then the transmittancete at v5v0
drops down to zero, as shown in Fig. 7~d!. But, if the inci-
dent wave polarization is orthogonal to the previous one@see
Fig. 7~c!#, the transmittance of the unidirectional slab
maximal. The explanation for such an unusual behavio
given further in this section. Of course, if the incident wa
polarization is chosen so that only a single evanescent m
Cev(z) continues inside the slab@no extended contribution
to CT(z)], the transmittance of any semi-infinite slab
strictly zero regardless of the frequencyv.

C. Frequency dependence of electromagnetic field amplitude
inside unidirectional slab

According to Eq.~80!, the transmitted waveCT(z) inside
the stack is a superposition of one extended~nearly frozen!
modeCex(z) and one evanescent modeCev(z). Since eva-
nescent modes do not transfer energy, the extended m
Cex(z) is solely responsible for the energy flux inside t
stack. The energy densityWex associated with the extende
Cex(z) can be expressed in terms of its group veloc
u(k)5v8(k) and the energy density fluxS(Fex),

Wex5S~Fex!/v8~k!, where S~Fex!5S~FT!5teS~F I !.
~83!

In line with Eq. ~3!, in the vicinity of the frozen mode
frequency
0-13
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v~k!2v0'
1

6
v-~k0!~k2k0!3

that gives

v8~k!'
1

2
v-~k0!~k2k0!2'

62/3

2
@v-~k0!#1/3~v2v0!2/3.

~84!

Plugging Eq.~84! into Eq. ~83! yields

Wex'
2

62/3
~teSI !@v-~k0!#21/3~v2v0!22/3, ~85!

whereSI5S(F I) is a fixed intensity of the incident wave,te
is the transmittance coefficient~82! depending on the inci-
dent wave polarization. Formula~85! implies that the ampli-
tudeFex of the extended nearly frozen mode inside the st
diverges in the vicinity of the stationary inflection point

Fex;AWex;AteSI@v-~k0!#21/6uv2v0u21/3 as v→v0 .
~86!

The divergence of the extended mode amplitudeFex in
the vicinity of the frozen mode frequencyv0 imposes a simi-
lar kind of behavior on the evanescent mode amplitudeFev .
Indeed, the boundary condition~81! requires that the result
ing field amplitudeFT5Fex1Fev at the slab boundary a
z50 remains limited to match the sumFL5F I1FR of the
incident and reflected waves outside the stack atz50. The
relation ~81! together with Eq.~86! imply that there is a
destructive interference of the extendedFex and evanescen
Fev modes at the stack boundary

Fex'2Fev;~v2v0!21/3 as v→v0 ~87!

so thatFT5Fex1Fev remains limited. The expression~87!
is in compliance with the earlier made statement~69! that the
column vectorsFexandFev become colinear asv→v0.

The numerical illustration of the behavior of the field am
plitudesuFexu2, uFevu2 and uFTu25uFex1Fevu2 at the slab
surface is illustrated in Figs. 9~a!–~c!, respectively.

D. Space distribution of electromagnetic field
inside unidirectional slab

SinceCex(z) is an extended Bloch eigenmode, its amp
tudeuCex(z)u remains constant atz.0, while the amplitude
of the evanescent contributionCev(z) to the resulting field
CT(z) decays as

at z.0: uCev~z!u5uFevue2zIm kev. ~88!

Therefore, as the distancez from the unidirectional slab
boundary increases, the destructive interference of the
tended and evanescent modes becomes ineffective, andz
@(Im kev)21 the only remaining contribution toCT(z) is
the extended nearly frozen modeCex(z) with huge and in-
dependent ofz amplitude~86!.

Let us consider the above behavior in more detail. A
cording to Eq.~67!, in the vicinity of v5v0,
16521
k

x-
t

-

Im kev'
A3

2
61/3@v-~k0!#21/3uv2v0u1/3. ~89!

Plugging Eq.~89! in Eq. ~88! gives

at z.0: uCev~z!u'uFevuF12z
A3

2
61/3@v-~k0!#21/3

3uv2v0u1/31OS z2uv2v0u2/3

~v-~k0!!2/3 D G ,

which together with Eqs.~86! and ~87! yields the following
asymptotic expression for the evanescent mode amplitud
function of v andz:

uCev~z!u'
AteSI

@v-~k0!#1/6F uv2v0u21/3

2z
A3

2
61/3@v-~k0!#21/31OS z2uv2v0u1/3

~v-~k0!!2/3 D G .

~90!

Finally, pluggingCex(z) from Eq.~86! andCev(z) from Eq.
~90! into CT(z)5Cex(z)1Cev(z) yields

uCT~z!u'uFTu1z
AteSI

@v-~k0!#1/2

A3

2
61/3 as v→v0 ,

~91!

where, according to Eq.~87!,

uFTu!uFexu'uFevu.

The asymptotic expression~91! for uCT(z)u is consistent
with the eigenmodeC1,0(z) from Eq. ~75!, which represents
one of the two Floquet-type solutions for the Maxwell equ
tion ~21! at v5v0.

A numerical example of electromagnetic field distributio
uCT(z)u2 inside the semi-infinite unidirectional slab for th
frequencyv close tov0 is shown in Fig. 8, while the limit-
ing case~91! of v5v0 is shown in Fig. 10. The relation~91!
implies that the resulting field amplitudeuCT(z)u2 increases
as the second power of the distancez from the slab surface
It reaches its maximum value ofuCex(z)u2;(v2v0)22/3 at
z@ l , where

l 5~ Im kev!215
2

A3
621/3@v-~k0!#1/3uv2v0u21/3. ~92!

There are two exceptions, however, merging into a sin
one atv5v0. The first exception occurs when the ellipt
polarization of the incident wave is chosen so that it p
duces just a single extended eigenmodeCex(z) inside the
slab @no evanescent contribution toCT(z)]. In this case,
CT(z) reduces toCex(z), and its amplitudeuCT(z)u remains
limited and independent ofz. As v approachesv0, the re-
spective transmittancete vanishes in this case, as shown
Fig. 7~d!. The second exception occurs when the elliptic p
larization of the incident wave is chosen so that it produ
0-14
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ELECTROMAGNETIC UNIDIRECTIONALITY IN . . . PHYSICAL REVIEW B67, 165210 ~2003!
just a single evanescent eigenmodeCev(z) inside the slab
@no extended contribution toCT(z)]. In such a case,CT(z)
reduces toCev(z), and its amplitudeuCT(z)u decays expo-
nentially with z in accordance with Eq.~88!. The respective
transmittance coefficientte in this latter case is zero regard
less of the frequencyv, because evanescent modes do
transfer energy. Importantly, asv approachesv0, the polar-
izations of the incident wave that produce either a sole
tended or a sole evanescent mode become indistinguish
which is a consequence of the property~69! of theTL eigen-
vectors. IfF I0 is such a polarization of the incident wav
the maximal transmittance is reached when the incid
wave polarization is orthogonal toF I0 @see Fig. 7~c!#.

Let us see what happens if the degree of spectral as
metry of the unidirectional periodic stack is very small.
this situation the stationary inflection pointk0 ,v0 in Fig. 1 is
very close to the band edgekb ,vb . In such a case, the thir
derivative v-(k0) along with the transmittancete of the
respective unidirectional slab atv5v0 are also very small.
At the same time, the ratiote /v-(k0), which according to
Eq. ~91! determines the electromagnetic field distribution
side the slab atv→v0, remains finite even if the quantitie
te andv-(k0) vanish. This implies that atv5v0, the char-
acter of the field distribution shown in Fig. 10 does n
change qualitatively even if

v8~k0!5v9~k0!5v-~k0!50, v-8~k0!Þ0.

Such a situation, however, corresponds to a degenerate
edge, rather than to a stationary inflection point~3!.

E. Backward wave incidence
on a semi-infinite unidirectional slab

Consider now electromagnetic wave incident on the s
face of the same unidirectional slab from the opposite dir
tion, as shown in Fig. 6. Such a situation is similar to that
the forward incidence on thereversedslab, which can be
obtained from the original unidirectional slab in Fig. 2 b
changing the sign of theF layers magnetization or by chang
ing the sign of the misalignment anglew5w12w2 of the
anisotropic dielectric layers.

Except for some obvious modifications involving the su
stitutionz→2z, formulas~76!–~83! still apply here. In par-
ticular, if the frequencyv lies within the rangeva,v
,vb in Fig. 1, the transmitted electromagnetic waveCT(z)
inside the slab is a superposition of the extended Bl
eigenmodeCEX(z) with the group velocityu,0 and the
evanescent modeCEV(z) with Im k,0,

at z,0: CT~z!5CEX~z!1CEV~z!. ~93!

This expression is similar to Eq.~80!, except that it involves
the other pair of the four Bloch eigenmodes. In the case
backward incidence, the nearly frozen modeCex(z) does not
contribute toCT(z) inside semi-infinite slab. Instead, th
extended contribution to the resulting transmitted elec
magnetic fieldCT(z) is nowCEX(z), which remains a regu
lar extended mode with finite negative group velocity even
v5v0. It does not mean, however, that the slab unidir
16521
t

-
le,

nt

-

-

t

nd

r-
-
f

-

h

f

-

t
-

tionality does not manifest itself in the case of the backw
incidence. Indeed, the evanescent contributionCEV(z) to
CT(z) still displays a singularity atv5v0, although its am-
plitude now remains limited even atv5v0.

Let us take a closer look at this situation. The comp
wave vectorkEV related toCEV(z) has negative imaginary
part and is defined in Eq.~67!,

kEV'k01
61/3

2
@v-~k0!#21/3@~v2v0!1/32 iA3uv2v0u1/3#.

Its singularity atv5v0 leads to a cusplike anomaly in fre
quency dependence of the backward transmittance of s
infinite unidirectional slab, similar to what we already saw
the case of forward incidence~see Fig. 7!. But there is a
crucial difference: the propagating mode amplitu
uCEX(z)u5uFEXu now remains limited in the whole fre
quency rangeva,v,vb , including the frozen mode fre
quencyv0 , as shown in Fig. 11. By contrast, in the case
forward incidence, the propagating mode amplitu
uCex(z)u5uFexu along with the field amplitudeuCT(z)u in-
side the stack rises enormously in the vicinity of the froz
mode frequencyv0, as shown in Fig. 9~a!. This striking
difference between the cases of forward and backward i
dence can be attributed to the frozen mode.

IV. A FINITE UNIDIRECTIONAL SLAB

Strictly speaking, the concept of unidirectionality appli
to infinite or semi-infinite periodic stacks. But in reality,
we have a finite slab, which is a sufficiently large fragme
of a periodic unidirectional stack, the results of the previo
section can still be relevant. LetN be the number of the
primitive cells in the slab, so that the slab thicknessD is
equal toLN. The approximation of infinite or semi-infinite
stack applies if

1!~LDk!21!N, ~94!

whereDk is the spectral width of the wave packet. In such
case, the interference of the pulses produced by interna
flections from the two opposite slab boundaries can be
nored. The results of the previous section relate to this p
ticular case.

In this section we consider a different situation when

1!N!~LDk!21. ~95!

In particular, we can refer to the limiting caseDk50 of a
strictly monochromatic incident wave. In this latter case t
approximation of infinite or semi-infinite slab does not ho
for any finiteN, due to multiple internal reflections form th
two slab boundaries. The electromagnetic fieldCT(z) inside
the slab is now a superposition of all four Bloch eigenmod
Cki

(z), i 51,2,3,4 for any given frequencyv regardless of
the direction of the incident wave propagation outside
slab. By contrast, in the case~94! of semi-infinite slab, there
are only two Bloch contributions~79! to CT(z). At the same
time, we expect some noticeable electromagnetic abnorm
ties even in the limiting case~95!, provided that the numbe
N of the elementary fragmentsL in the slab is large enough
0-15
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FIG. 13. Forward ~a! and
backward~b! tramittance of the fi-
nite unidirectional slab withN
532. The frequencyv lies in the
vicinity of the lowest band edge
vb in Fig. 1.
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Transmittance of a finite unidirectional slab

The transmittance of an arbitrary finite slab can be
pressed directly in terms of the transfer matrixTN of the slab,
which in our case is defined by

TN5~TL!N. ~96!

Indeed, the relation

C~D !5TNC~0! ~97!

together with the pair of boundary conditions

C~0!5C I~0!1CR~0!, C~D !5CP~D ! ~98!

allow us to express both the reflected waveCR(0) and the
wave CP(D) passed through the slab, in terms of a giv
incident waveC I(0) from Eq.~78! and the elements of th
transfer matrixTN . It also gives the transmittance/reflectan
coefficients of the slab defined as

tN5
uCP~D !u2

uC I~0!u2
, rN5

uCR~0!u2

uC I~0!u2
; tN1rN51, ~99!

respectively. The above procedure is commonly used
computation of the transmittance/reflectance coefficients
magnetic layered structures~see, for example, Refs. 13–1
and references therein!. Notice that as long as we are dealin
with strictly monochromatic incident wave (Dk50), the
transmittance/reflectance coefficients~82! of a semi-infinite
slab cannot be viewed as the limiting caseN→` of the
transmittance/reflectance coefficients~99! of a finite slab.

Since the transmittance computation for a finite slab w
a given transfer matrixTN is a well-established procedure
16521
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we skip the details and turn to the physical results. If a s
is composed of just a few elementary cellsL in Fig. 2, its
transmittance does not show any peculiarities in the vicin
of the frozen mode frequencyv0. As the numberN in-
creases, the electromagnetic abnormalities in the vicinity
the frozen mode frequency become more and more disti
In Figs. 12 and 13 we present some numerical results for
transmittance of a finite unidirectional slab comprisingN
532 identical elementary fragmentsL. This number of lay-
ers appears to be large enough to display all the qualita
features characteristic of a very thick unidirectional slab. T
most distinguishable new feature is that the forward~left-to-
right! and the backward~right-to-left! transmittance coeffi-
cients do show a strong abnormality in the vicinity of th
frozen mode frequencyv0. In particular, if the elliptic polar-
ization of the incident wave coincides with that of the ma
mal transmittance of the respective semi-infinite slab@see
Fig. 7~c!#, the finite slab becomes totally transparent,
shown in Fig. 12~a!. A small difference between the fre
quency of total transmittance andv0 is due to a finite thick-
ness of the slab.

At frequencies not too close tov0, the electromagnetic
properties of a unidirectional slab are not much differe
from those of regular magnetic stacks~see, for example,13–16

and references therein!. In particular, at certain polarization
of the incident wave, a finite slab displays both, forward a
backward resonant transmittance even in the close proxim
of the band edges, as shown in Fig. 13.

V. SUMMARY

As we have shown, the phenomenon of unidirectiona
in magnetic photonic crystals is always associated with
0-16
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ELECTROMAGNETIC UNIDIRECTIONALITY IN . . . PHYSICAL REVIEW B67, 165210 ~2003!
existence of special propagating mode with zero group
locity vk8(k) and its derivativevkk9 (k). We call it the frozen
mode. At first glance, the fact that the frozen mode has z
group velocity will bring some similarity between the vicin
ity of the frozen mode frequency~at v'v0), and the vicin-
ity of the photonic band edge~say, atv'vb). Indeed, in
either situation the propagating electromagnetic wave ins
the periodic medium slows down dramatically, although
the frozen mode case the slowdown occurs only in one of
two opposite directions~the unidirectionality!. But in fact,
the dissimilarity between the two situations does not red
just to the phenomenon of unidirectionality.

The most graphic manifestation of the fundamental diff
ence between the vicinity of the frozen mode frequencyv0

and the vicinity of a band-gap frequencyvb is provided by
the simple and important case of electromagnetic wave i
dence on the surface of a semi-infinite slab shown in Fig
In a broad vicinity of the frozen mode frequency, includin
the point v5v0, the incident radiation enters the sem
infinite slab with little reflectance. By contrast, atv'vb the
same semi-infinite slab reflects 100% of the incident rad
tion. This crucial difference is illustrated in Figs. 7~a!–~c!. In
fact, the only way to transmit the radiation at frequencyv
'vb inside the slab is to make the slab thin enough to
sure strong interference after multiple reflections from
two slab boundaries~see, for example, Ref. 21 and refe
ences therein!.

What happens in a photonic crystal at frequencies clos
the frozen mode frequencyv0 is that the pulse freely enter
the slab, where it slows down by, say, two or three orders
magnitude and increases in amplitude proportionally. Th
the pulse slowly continues through the slab without losing
distinct individuality until it reaches the opposite bounda
or gets converted or absorbed inside the slab. The fact th
the vicinity of the stationary inflection point~3! ~i.e., at v
'v0) the space dispersionvkk9 (k) vanishes, further contrib
uting to the pulse stability.Nothing like that can occur in any
regular photonic crystal, not supporting the frozen mode. In
addition, the electromagnetic density of mode display
much stronger anomaly atv'v0 compared to any othe
location in the Brillouin zone including the band edges. T
latter circumstance must facilitate the observation and u
zation of the frozen mode phenomena. The above uni
features, in a combination with the relative simplicity of th
multilayered structures, can make unidirectional photo
crystals very attractive for practical purposes. This may
clude:

• various nonlinear applications~see, for example, Refs
22 and 21, and references therein!, which can take advantag
of huge amplitude of the frozen mode, in a combination w
high transmittance and high density of modes at the res
tive frequency;

• tunable delay lines, utilizing low group velocity of th
frozen mode, as well as its low dispersion (vkk9 '0) and high
transmittance of the slab;

• electromagnetic nonreciprocal devices, utilizing the p
nomenon of unidirectionality itself.
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APPENDIX A:
GYROTROPIC STACK WITH THREE-LAYERED CELL

Having studied numerically a number of periodic ma
netic stacks with bulk spectral asymmetry, we come to
following conclusion. As long as we restrict ourselves to t
lowest spectral band, the electromagnetic dispersion relat
with stationary inflection point computed for different stac
appear to be qualitatively similar to each other and to wha
shown in Fig. 1. In addition to this, since our prime intere
here is with the vicinity of the frozen mode frequencyv0, all
essential electromagnetic features prove to be quite unive
and dependent on a single dimensionless parameterf from
Eq. ~4!. In the case of strong spectral asymmetry,f is of the
order of magnitude of unity. This circumstance allows us
use any particular numerical example to obtain a comp
picture of what is going on in unidirectional photonic cry
tals in the vicinity of the frozen mode frequency. Examp
considered in this section represents the simplest and,
haps, the most practical design of a periodic layered struc
with the property of bulk spectral asymmetry~1!. This array,
shown in Fig. 2, is similar to that considered in Ref. 10.
already noted, a particular choice of the physical parame
of the stack does not matter, as long as it provides a cer
value off.

The A layers are described by the following reduc
property tensors:

«̂A5F«xx «xy

«xy «yy
G5F«1d cos 2w d sin 2w

d sin 2w «2d cos 2wG ,
m̂A5Fmxx mxy

mxy myy
G5Fm1D cos 2w D sin 2w

D sin 2w m2D cos 2wG .
~A1!

All components of«̂A andm̂A are presumed real. Paramete
d and D describe the anisotropy in thexy plane, while the
anglew defines the orientation of the common principle ax
of «̂A and m̂A in the xy plane. The misalignment anglew1
2w2 between the neighboring layers in Fig. 2 must be d
ferent from 0 andp/2. All A layers are made of the sam
dielectric material and have the same thicknessA .

The four solutions for the Maxwell equation~21! with
material relations~A1! are
0-17
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eiq1zFA1 ,e2 iq1zFA1 ,eiq2zFA2 ,e2 iq2zFA2 , ~A2!

where

FA15F cosw

sinw

2h1sinw

h1cosw

G , FA25F 2sinw

cosw

2h2cosw

2h2sinw

G , ~A3!

q15
v

c
n15

v

c
A~«1d!~m2D!,

q25
v

c
n25

v

c
A~«2d!~m1D!, ~A4!
16521
h15A~«1d!~m2D!21, h25A~«2d!~m1D!21.
~A5!

Substituting the eigenmodes~A2! into Ŵ(z) from Eq.
~25! and using the definition~27! of the T matrix, we have
the following expression for the transfer matrixT̂A of an
individual A layer as a function of the layer thicknessA and
the misalignment anglew:

T̂A~w,A!5Ŵ~w,A!Ŵ21~w,0!, ~A6!

where
Ŵ~w,A!5F ~cosw!ein1a ~cosw!e2 in1a 2~sinw!ein2a 2~sinw!e2 in2a

~sinw!ein1a ~sinw!e2 in1a ~cosw!ein2a ~cosw!e2 in2a

2h1~sinw!ein1a h1~sinw!e2 in1a 2h2~cosw!ein2a h2~cosw!e2 in2a

h1~cosw!ein1a 2h1~cosw!e2 in1a 2h2~sinw!ein2a h2~sinw!e2 in2a

G , ~A7!
n

of
a5
v

c
A. ~A8!

The F layers are ferromagnetic~or ferrimagnetic! with
magnetizationMW 0 parallel to thez direction; there is no in-
plane anisotropy in this case,

«̂F5F e ia

2 ia e G ; m̂F5F m ib

2 ib m G . ~A9!

The real parametersa andb in Eq. ~A9! are responsible for
Faraday rotation. AllF layers have the same thicknessF.

The four solutions for the Maxwell equation~21! with
material relations~A9! are

eiq1zFF1 ,e2 iq1zFF1 ,eiq2zFF2 ,e2 iq2zFF2 , ~A10!

where

FF15F 1

2 i

ih1

h1

G , FF25F 2 i

1

2h2

2 ih2

G , ~A11!

q15
v

c
n15

v

c
A~e1a!~m1b!, q25

v

c
n2

5
v

c
A~e2a!~m2b!, ~A12!

h15A~e1a!~m1b!21, h25A~e2a!~m2b!21.
~A13!
Substituting the eigenmodes~A10! into Ŵ(z) from Eq. ~25!
and using the definition~27! of the T matrix, we have the
following expression for the transfer matrixT̂F of an indi-
vidual F layer as a function of the layer thicknessF:

T̂F5Ŵ~F !Ŵ21~0!, ~A14!

where

Ŵ~F !

5F ein1f e2 in1f 2 iein2f 2 ie2 in2f

2 iein1f 2 ie2 in1f ein2f e2 in2f

ih1ein1f 2 ih1e2 in1f 2h2ein2f h2e2 in2f

h1ein1f 2h1e2 in1f 2 ih2ein2f ih2e2 in2f

G ,

~A15!

f 5
v

c
F. ~A16!

TheT atrices ofF layers with two opposite signs ofMW 0, are
related by transposition of the indices 1 and 2.

Having theT matrices of both constitutive layers, one ca
obtain the explicit expression for the transfer matrixTL of
the three-layered primitive cell in Fig. 2,

TL~w,A,F !5TA~w1 ,A!TA~w2 ,A!TF~F !. ~A17!

Symbolic analysis of the transfer matrixTL(w,A,F), as well
as the corresponding characteristic equation~38!, has been
carried out using the computer algebra package
‘‘maple 7.’’
0-18
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ELECTROMAGNETIC UNIDIRECTIONALITY IN . . . PHYSICAL REVIEW B67, 165210 ~2003!
We have also conducted a number of numerical exp
ments with this particular gyrotropic stack. When it comes
the vicinity of the frozen mode frequency, the general pict
is universal, provided that the dimensionless parametef
from Eq. ~4! is not too small. For this reason, all numeric
illustrations in this paper refer to a single numerical set
material parameters of the stack chosen as follows:

for the A layer: n155.1, h155.1, n251.1, h251.1,

for the F layer: n1522.023, h150.227 04,

n2510.724, h250.466 25,
~A18!

with the misalignment angle

w12w25p/4.

The numerical values~A18! are practically available at fre
quencies below 1012Hz, but otherwise they are chosen ra
domly. On the other hand, having set the material parame
~A18!, we must find the exact values of the layer thicknes
so that at some frequencyv0 the stack develops a stationa
inflection point ~3! and therefore displays the property
unidirectionality. For the numerical values~A18! we found

r05F/A50.009 536 025 9,

V05Lv0 /c50.607 676 756, ~A19!

K05k0L52.632 925 94

wherer0 is the required ratio of the layer thicknesses;V0 is
the dimensionless frozen mode frequency; andK0 is the the
dimensionless wave vector associated with the frozen m
In all numerical graphs presented in this paper we use
dimensionless notationsvL/c andkL for the frequency and
the wave vector, respectively.

APPENDIX B: ANALYTIC PROPERTIES
OF THE TRANSFER MATRIX T̂L IN A VICINITY

OF THE FROZEN MODE FREQUENCY

Consider the frequency-dependent 434 transfer matrix
TL(v) in a vicinity of the frozen mode frequencyv0,

T̂L~v!5T̂L01nT̂L11•••, n5v2v0 ;

T̂L05T̂L~v0!, T̂L15T̂L8~v0!, . . . . ~B1!

We assume the dependence ofT̂L(v) on v to be analytic in
the vicinity of v5v0. The following considerations ar
based on general facts from the analytic perturbation the
for the spectra of matrices.23

The characteristic equation~38! for T̂L(v) has the form

det@ T̂L~v!2z Î 4#50, z5eikL, ~B2!

where Î 4 is the 434 identity matrix. SinceTL(v) is a 4
34 matrix, Eq.~B2! can be recast as

z41P3~n!z31P2~n!z21P1~n!z1150, ~B3!
16521
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where the complex valued functionsPJ(n), j 50,1,2,3 are
analytic inn in a vicinity of n50.

According to Eq.~38!, the frozen mode regime atn50
can be ultimately characterized by the fact that forn50 Eq.
~B3! takes the following special form

~z2z0!3~z2z1!50,

where

z15z0
23 , uz1u5uz0u51, z1Þz0 , ~B4!

wherez05eik0L corresponds to the frozen mode.
If the characteristic equation~B2! takes the special form

~B4! nearn50, thenTL(v) can be represented as follows

T̂L~v01n!5Û~n!F z1~n! 0

0 Q̂~n!
G Û21~n!, ~B5!

whereÛ(n) is an invertable 434 matrix depending analyti-
cally on n;

z1~n!5z11j1n1j2n21••• ~B6!

is an analytic inn complex valued function;Q̂(n) is a 3
33 matrix depending analytically onn. In addition to that,

Q̂~n!5Q̂01Q̂1n1•••, Q̂05z0Î 31D̂, ~B7!

where Î 3 is 333 identity matrix, and

Q̂05z0Î 31D̂ ~B8!

is the spectral decomposition~related to Jordan forms! of Q̂0

with D̂ being nilpotent matrix~see Ref. 24, Sec. 6!,26 i.e.,

D̂350. ~B9!

We would like to show that Eq.~B8! is nontrivial in the
sense thatD̂Þ0 and, in addition to that,

D̂2Þ0. ~B10!

Notice that the characteristic equation forQ̂(n) is

det~Q̂~n!2z Î 3!50, z5eikL, ~B11!

and, in view of Eqs.~B2! and ~B4! it takes the following
form:

~z2z0!31@p2n1O~n2!#~z2z0!2

1@p1n1O~n2!#~z2z0!1p0n50, ~B12!

where

p0Þ0 ~B13!

@according to Eq.~66!, p056iL 3/v-(k0)]. In view of the
Caley-Hamilton theorem~see, for instance, Ref. 24, Se
6.2!, Q̂(n) of the form~B7! satisfies the characteristic equ
tion ~B12!. In other words, Eq.~B12! holds if we substitute
z5Q̂(n) treating all other complex numbers as scalar ma
ces, i.e.,
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@Q̂~n!2z0Î 3#31p2n@Q̂~n!2z0Î 3#21p1n@Q̂~n!2z0Î 3#

1p0Î 3n1O~n2!50. ~B14!

Now substitutingQ̂(n)5Q̂01Q̂1n1O(n2) in Eq. ~B14! and
taking in account Eq.~B8! we single out the linear with
respect ton terms getting the following matrix equations:

D̂2Q̂11D̂Q̂1D̂1Q̂1D̂21p2D̂21p1D̂52p0Î 3 .
~B15!

Suppose now for the sake of argument that Eq.~B10! does
not hold, and henceD250. Then Eq.~B15! turns into

D̂Q̂1D̂1p1D̂5p0Î 3 , ~B16!

implying

det~D̂Q̂1D̂1p1D̂ !5detDdet~Q̂1D̂1p1!5p0
3 .

~B17!
ig

16521
In view of Eq. ~B9!, detD̂50, which together with Eq.
~B17! implies thatp050, contradicting Eq.~B13!. Therefore
Eq. ~B10! is correct andQ̂05z0Î 31D̂ has nontrivial Jordan
structure. In fact, in view of Eq.~B9! Q̂0 we have

Q̂05Ŝ0F z0 1 0

0 z0 1

0 0 z0

G Ŝ0
21

for some invertableŜ0. Notice also that

Q̂~n!5F 0 1 0

0 0 1

n 0 0
G ~B18!

is an exact solution to the matrix equation

Q̂3~n!5nI 3 . ~B19!
me-
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